RESUMO
This review summarizes the latest discoveries in the field of C-H activation by copper monoxygenases and more particularly by their bioinspired systems. This work first describes the recent background on copper-containing enzymes along with additional interpretations about the nature of the active copper-oxygen intermediates. It then focuses on relevant examples of bioinorganic synthetic copper-oxygen intermediates according to their nuclearity (mono to polynuclear). This includes a detailed description of the spectroscopic features of these adducts as well as their reactivity towards the oxidation of recalcitrant Csp3 -H bonds. The last part is devoted to the significant expansion of heterogeneous catalytic systems based on copper-oxygen cores (i.e. within zeolite frameworks).
RESUMO
The pigmentation of the skin, modulated by different actors in melanogenesis, is mainly due to the melanins (protective pigments). In humans, these pigments' precursors are synthetized by an enzyme known as tyrosinase (TyH). The regulation of the enzyme activity by specific modulators (inhibitors or activators) can offer a means to fight hypo- and hyper-pigmentations responsible for medical, psychological and societal handicaps. Herein, we report the investigation of phenylalanine derivatives as TyH modulators. Interacting with the binuclear copper active site of the enzyme, phenylalanine derivatives combine effects induced by combination with known resorcinol inhibitors and natural substrate/intermediate (amino acid part). Computational studies including docking, molecular dynamics and free energy calculations combined with biological activity assays on isolated TyH and in human melanoma MNT-1 cells, and X-ray crystallography analyses with the TyH analogue Tyrp1, provide conclusive evidence of the interactions of phenylalanine derivatives with human tyrosinase. In particular, our findings indicate that an analogue of L-DOPA, namely (S)-3-amino-tyrosine, stands out as an amino phenol derivative with inhibitory properties against TyH.
Assuntos
Inibidores Enzimáticos , Monofenol Mono-Oxigenase , Fenilalanina , Humanos , Monofenol Mono-Oxigenase/metabolismo , Monofenol Mono-Oxigenase/antagonistas & inibidores , Monofenol Mono-Oxigenase/química , Fenilalanina/química , Fenilalanina/metabolismo , Fenilalanina/análogos & derivados , Fenilalanina/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/síntese química , Simulação de Acoplamento Molecular , Cristalografia por Raios X , Simulação de Dinâmica Molecular , Domínio Catalítico , Estrutura MolecularRESUMO
Copper ion is a versatile and ubiquitous facilitator of redox chemical and biochemical processes. These include the binding of molecular oxygen to copper(I) complexes where it undergoes stepwise reduction-protonation. A detailed understanding of thermodynamic relationships between such reduced/protonated states is key to elucidate the fundamentals of the chemical/biochemical processes involved. The dicopper(I) complex [CuI2(BPMPO-)]1+ {BPMPOH = 2,6-bis{[(bis(2-pyridylmethyl)amino]methyl}-4-methylphenol)} undergoes cryogenic dioxygen addition; further manipulations in 2-methyltetrahydrofuran generate dicopper(II) peroxo [CuII2(BPMPO-)(O22-)]1+, hydroperoxo [CuII2(BPMPO-)(-OOH)]2+, and superoxo [CuII2(BPMPO-)(O2â¢-)]2+ species, characterized by UV-vis, resonance Raman and electron paramagnetic resonance (EPR) spectroscopies, and cold spray ionization mass spectrometry. An unexpected EPR spectrum for [CuII2(BPMPO-)(O2â¢-)]2+ is explained by the analysis of its exchange-coupled three-spin frustrated system and DFT calculations. A redox equilibrium, [CuII2(BPMPO-)(O22-)]1+ â [CuII2(BPMPO-)(O2â¢-)]2+, is established utilizing Me8Fc+/Cr(η6-C6H6)2, allowing for [CuII2(BPMPO-)(O2â¢-)]2+/[CuII2(BPMPO-)(O22-)]1+ reduction potential calculation, E°' = -0.44 ± 0.01 V vs Fc+/0, also confirmed by cryoelectrochemical measurements (E°' = -0.40 ± 0.01 V). 2,6-Lutidinium triflate addition to [CuII2(BPMPO-)(O22-)]1+ produces [CuII2(BPMPO-)(-OOH)]2+; using a phosphazene base, an acid-base equilibrium was achieved, pKa = 22.3 ± 0.7 for [CuII2(BPMPO-)(-OOH)]2+. The BDFEOO-H = 80.3 ± 1.2 kcal/mol, as calculated for [CuII2(BPMPO-)(-OOH)]2+; this is further substantiated by H atom abstraction from O-H substrates by [CuII2(BPMPO-)(O2â¢-)]2+ forming [CuII2(BPMPO-)(-OOH)]2+. In comparison to known analogues, the thermodynamic and spectroscopic properties of [CuII2(BPMPO-)] O2-derived adducts can be accounted for based on chelate ring size variations built into the BPMPO- framework and the resulting enhanced CuII-ion Lewis acidity.
RESUMO
A family of bis(µ-hydroxido)dicopper(II,II) complexes bearing a naphthyridine-based scaffold has been synthesized and characterized. Cyclic voltammetry reveals that the nature of the anions present in the complexes plays a pivotal role in their electrochemical properties. X-ray diffraction, spectroscopic and electrochemical analysis data support the formation of intimate ion pairs by non-covalent interactions driving to a ca. 270 mV difference for the potential required to monooxidize the CuIICuII species.
RESUMO
In human, Tyrosinase enzyme (TyH) is involved in the key steps of protective pigments biosynthesis (in skin, eyes and hair). The use of molecules targeting its binuclear copper active site represents a relevant strategy to regulate TyH activities. In this work, we targeted 2-Hydroxypyridine-N-oxide analogs (HOPNO, an established chelating group for the tyrosinase dicopper active site) with the aim to combine effects induced by combination with a reference inhibitor (kojic acid) or natural substrate (tyrosine). The HOPNO-MeOH (3) and the racemic amino acid HOPNO-AA compounds (11) were tested on purified tyrosinases from different sources (fungal, bacterial and human) for comparison purposes. Both compounds have more potent inhibitory activities than the parent HOPNO moiety and display strictly competitive inhibition constant, in particular with human tyrosinase. Furthermore, 11 appears to be the most active on the B16-F1 mammal melanoma cells. The investigations were completed by stereospecificity analysis. Racemic mixture of the fully protected amino acid 10 was separated by chiral HPLC into the corresponding enantiomers. Assignment of the absolute configuration of the deprotected compounds was completed, based on X-ray crystallography. The inhibition activities on melanin production were tested on lysates and whole human melanoma MNT-1 cells. Results showed significant enhancement of the inhibitory effects for the (S) enantiomer compared to the (R) enantiomer. Computational studies led to an explanation of this difference of activity based for both enantiomers on the respective position of the amino acid group versus the HOPNO plane.
Assuntos
Melanoma Experimental , Monofenol Mono-Oxigenase , Animais , Humanos , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Domínio Catalítico , Aminoácidos , Melaninas , Mamíferos/metabolismoRESUMO
A number of stressors and inflammatory mediators (cytokines, proteases, oxidative stress mediators) released during inflammation or ischemia stimulate and activate cells in blood, the vessel wall or tissues. The most well-known functional and phenotypic responses of activated cells are (1) the immediate expression and/or release of stored or newly synthesized bioactive molecules, and (2) membrane blebbing followed by release of microvesicles. An ultimate response, namely the formation of extracellular traps by neutrophils (NETs), is outside the scope of this work. The main objective of this article is to provide an overview on the mechanism of plasminogen reception and activation at the surface of cell-derived microvesicles, new actors in fibrinolysis and proteolysis. The role of microvesicle-bound plasmin in pathological settings involving inflammation, atherosclerosis, angiogenesis, and tumour growth, remains to be investigated. Further studies are necessary to determine if profibrinolytic microvesicles are involved in a finely regulated equilibrium with pro-coagulant microvesicles, which ensures a balanced haemostasis, leading to the maintenance of vascular patency.
Assuntos
Micropartículas Derivadas de Células , Fibrinólise , Plasminogênio , Proteólise , Humanos , Vasos Sanguíneos/metabolismo , Fibrinolisina/metabolismo , Fibrinólise/fisiologia , Inflamação/metabolismo , Plasminogênio/metabolismo , Micropartículas Derivadas de Células/metabolismoRESUMO
Microvesicles (MVs) are key markers in human body fluids that reflect cellular activation related to diseases as thrombosis. These MVs display phosphatidylserine at the outer leaflet of their plasma membrane as specific recognition moieties. The work reported in this manuscript focuses on the development of an original method where MVs are captured by bimetallic zinc complexes. A set of ligands have been synthetized based on a phenol spacer bearing in para position an amine group appended to a short or a longer alkyl chain (for grafting on surface) and bis(dipicolylamine) arms in ortho position (for zinc coordination). The corresponding dibridged zinc phenoxido and hydroxido complexes have been prepared in acetronitrile in presence of triethylamine and characterized by several spectroscopic techniques. The pH-driven interconversion studies for both complexes in H2O:DMSO (70:30) evidence that at physiologic pH the main species are mono-bridged by the phenoxido spacer. An X-Ray structure obtained from complex 2 (based on the ligand with the amine group on the short chain) in aqueous medium confirms the presence of a mono-bridged complex. Then, the complexes have been used for interaction studies with short-chain phospholipids. Both have established the selective recognition of the anionic phosphatidylserine model versus zwitterionic phospholipids (in solution by 31P NMR and after immobilization on solid support by surface plasmon resonance (SPR)). Moreover, both complexes have also demonstrated their ability to capture MVs isolated from human plasma. These complexes are thus promising candidates for MVs probing by a new approach based on coordination chemistry.
Assuntos
Fosfatidilserinas , Zinco , Humanos , Zinco/química , Fenóis , Aminas , Espectroscopia de Ressonância MagnéticaRESUMO
Tyrosinase enzymes (Tys) are involved in the key steps of melanin (protective pigments) biosynthesis and molecules targeting the binuclear copper active site on tyrosinases represent a relevant strategy to regulate enzyme activities. In this work, the possible synergic effect generated by a combination of known inhibitors is studied. For this, derivatives containing kojic acid (KA) and 2-hydroxypyridine-N-oxide (HOPNO) combined with a thiosemicarbazone (TSC) moiety were synthetized. Their inhibition activities were evaluated on purified tyrosinases from different sources (mushroom, bacterial, and human) as well as on melanin production by lysates from the human melanoma MNT-1 cell line. Results showed significant enhancement of the inhibitory effects compared with the parent compounds, in particular for HOPNO-TSC. To elucidate the interaction mode with the dicopper(II) active site, binding studies with a tyrosinase bio-inspired model of the dicopper(II) center were investigated. The structure of the isolated adduct between one ditopic inhibitor (KA-TSC) and the model complex reveals that the binding to a dicopper center can occur with both chelating sites. Computational studies on model complexes and docking studies on enzymes led to the identification of KA and HOPNO moieties as interacting groups with the dicopper active site.
Assuntos
Agaricales , Monofenol Mono-Oxigenase , Agaricales/metabolismo , Quelantes , Inibidores Enzimáticos/farmacologia , Humanos , Monofenol Mono-Oxigenase/metabolismo , Relação Estrutura-AtividadeRESUMO
The electrochemically generated CuIICuIII mixed-valence species promotes activation of strong aliphatic C-H bonds (i.e. toluene) at room temperature. The mechanistic pathway turns from stoichiometric to catalytic upon addition of base, hence demonstrating that such high-valence dicopper species can be key reactive intermediates in copper-based oxidative processes.
RESUMO
A (µ-hydroxido, µ-phenoxido)CuIICuII complex 1 has been synthesized using an unsymmetrical ligand bearing an N, N-bis(2-pyridyl)methylamine (BPA) moiety coordinating one copper and a dianionic bis-amide moiety coordinating the other copper(II) ion. Electrochemical mono-oxidation of the complex in DMF occurs reversibly at 213 K at E1/2 = 0.12 V vs Fc+/Fc through a metal-centered process. The resulting species (complex 1+) is only stable at low temperature and has been spectroscopically characterized by UV-vis-NIR cryo-spectroelectrochemical and EPR methods. DFT and TD-DFT calculations, consistent with experimental data, support the formation of a CuIICuIII phenoxido-hydroxido complex. Low-temperature chemical oxidation of 1 by NOSbF6 yields a tetranuclear complex 2(SbF6)(NO2) which displays two binuclear CuIICuII subunits. The X-ray crystal structure of 2(SbF6)(NO2) evidences that the nitrogen of the terminal amide group is protonated and the coordination of the amide occurs via the O atom. The bis-amide moiety appears to be a non-innocent proton acceptor along the redox process. Alternatively, protonation of complex 1 leads to the complex 2(ClO4)2, as evidenced by X-ray crystallography, cyclic voltammetry, and 1H NMR.
RESUMO
The redox properties and electronic structures of a series of phenoxo- and hydroxo-bridged dicopper(II) complexes have been explored. Complexes (1a-c)2+ are based on symmetrical ligands with bis(2-methylpyridyl)aminomethyl as complexing arms bearing different substituting R groups (CH3, OCH3, or CF3) in the para position of the phenol moiety. Complex 2a2+ is based on a symmetrical ligand with bis(2-ethylpyridyl)aminomethyl arms and R = CH3, while complex 3a2+ involves an unsymmetrical ligand with two different complexing arms (namely bis(2-ethylpyridyl)aminomethyl and bis(2-methylpyridyl)aminomethyl). Investigations have been done by electrochemical and spectroelectrochemical means and correlated to theoretical calculations as this series of complexes offers a unique opportunity of an in-depth comparative analysis. The voltammetric studies have shown that the redox behavior of the dicopper complexes is not influenced by the nature of the solvent. However, the increase of the spacer chain length and the unsymmetrical design induce significant modifications of the voltammetric responses for both oxidation and reduction processes. DFT calculations of the redox potentials using a computational reference redox couple calculated at the same level of theory to reduce systematic errors confirm these results. Ligand contributions to the electronic structure of the different species have been analyzed in detail. The good agreement between experimental and theoretical results has validated the developed calculation method, which would be used in the following to design new dinuclear copper complexes. These studies demonstrate that subtle modification of the ligand topology can significantly affect the redox and spectroscopic properties. In particular, the unsymmetrical design allows the formation of a transient mixed-valent Cu(II)-Cu(III) phenoxo complex detected upon spectroelectrochemical experiments at room temperature, which evolves toward a dicopper (II,II) phenoxyl complex. The latter displays an intense π â π* transition band at 393 nm in the UV-vis spectrum compared to the less intense ligand to metal charge transfer band at 518 nm observed for the mixed-valent Cu(II)-Cu(III) phenoxo complex.
RESUMO
With the aim to develop effective and selective human tyrosinase inhibitors, we investigated aurone derivatives whose B-ring was replaced by a non-oxidizable 2-hydroxypyridine-N-oxide (HOPNO) moiety. These aurones were synthesized and evaluated as inhibitors of purified human tyrosinase. Excellent inhibition activity was revealed and rationalized by theoretical calculations. The aurone backbone was especially found to play a crucial role, as the HOPNO moiety alone provided very modest activity on human tyrosinase. Furthermore, the in vitro activity was confirmed by measuring the melanogenesis suppression ability of the compounds in melanoma cell lysates and whole cells. Our study reveals that HOPNO-embedded 6-hydroxyaurone is to date the most effective inhibitor of isolated human tyrosinase. Owing to its low toxicity and its high inhibition activity, it could represent a milestone on the path toward new valuable agents in dermocosmetics, as well as in medical fields where it was recently suggested that tyrosinase could play key roles.
RESUMO
Bis(µ-hydroxo)dicopper(II,II) bearing a naphthyridine-based ligand has been synthesized and characterized in the solid state and solution. Cyclic voltammetry at room temperature displays a reversible redox system that corresponds to the monoelectronic oxidation of the complex. Spectroscopic and time-resolved spectroelectrochemical data coupled to theoretical results support the formation of a charge-localized mixed-valent Cu(II,III)2 species.
RESUMO
Among the human copper-containing monooxygenases, Tyrosinase (Ty) is an important enzyme involved in the determinant step of the biosynthetic pathway of melanin pigment. In this pathway, Ty catalyzes the tyrosine monooxygenation into L-DOPA-quinone, which is the precursor of the skin pigment melanin. Ty inhibitors/activators are a well-established approach for controlling in vivo melanin production, so their development has a huge economical and industrial impact. Moreover, recent publications highlight that targeting tyrosinase with inhibitors/activators to treat melanogenesis disorders is one of many possible approaches, due to the complex biochemical reaction involved in the melanin synthesis.
Assuntos
Melanoma/tratamento farmacológico , Monofenol Mono-Oxigenase/metabolismo , Sequência de Aminoácidos , Biocatálise , Humanos , Melanoma/enzimologia , Melanoma/patologia , Modelos Moleculares , Monofenol Mono-Oxigenase/química , Proteínas de Neoplasias/química , Proteínas de Neoplasias/efeitos dos fármacos , Homologia de Sequência de AminoácidosRESUMO
Tyrosinase (Ty) is a copper-containing enzyme widely present in plants, bacteria, and humans, where it is involved in biosynthesis of melanin-type pigments. Development of Ty inhibitors is an important approach to control the production and the accumulation of pigments in living systems. In this paper, we focused our interest in phenylthiourea (PTU) and phenylmethylene thiosemicarbazone (PTSC) recognized as inhibitors of tyrosinase by combining enzymatic studies and coordination chemistry methods. Both are efficient inhibitors of mushroom tyrosinase and they can be considered mainly as competitive inhibitors. Computational studies verify that PTSC and PTU inhibitors interact with the metal center of the active site. The KIC value of 0.93 µM confirms that PTSC is a much more efficient inhibitor than PTU, for which a KIC value of 58 µM was determined. The estimation of the binding free energies inhibitors/Ty confirms the high inhibitor efficiency of PTSC. Binding studies of PTSC along with PTU to a dinuclear copper(II) complex ([Cu2(µ-BPMP)(µ-OH)](ClO4)2 (1); H-BPMP = 2,6-bis-[bis(2-pyridylmethyl)aminomethyl]-4-methylphenol) known to be a structural and functional model for the tyrosinase catecholase activity, have been performed. Interactions of the compounds with the dicopper model complex 1 were followed by spectrophotometry and electrospray ionization (ESI). The molecular structure of 1-PTSC and 1-PTU adducts were determined by single-crystal X-ray diffraction analysis showing for both an unusual bridging binding mode on the dicopper center. These results reflect their adaptable binding mode in relation to the geometry and chelate size of the dicopper center.
Assuntos
Agaricus/enzimologia , Cobre/química , Inibidores Enzimáticos/química , Monofenol Mono-Oxigenase/antagonistas & inibidores , Feniltioureia/química , Tiossemicarbazonas/química , Agaricus/química , Agaricus/efeitos dos fármacos , Complexos de Coordenação/química , Complexos de Coordenação/metabolismo , Cobre/metabolismo , Cristalografia por Raios X , Inibidores Enzimáticos/farmacologia , Humanos , Levodopa/metabolismo , Modelos Moleculares , Monofenol Mono-Oxigenase/química , Monofenol Mono-Oxigenase/metabolismo , Oxirredução/efeitos dos fármacos , Feniltioureia/farmacologia , Tiossemicarbazonas/farmacologiaRESUMO
Tyrosinase is a copper-containing enzyme found in plants and bacteria, as well as in humans, where it is involved in the biosynthesis of melanin-type pigments. Tyrosinase inhibitors have attracted remarkable research interest as whitening agents in cosmetology, antibrowning agents in food chemistry, and as therapeutics. In this context, commercially available tyrosinase from mushroom (TyM) is frequently used for the identification of inhibitors. This and bacterial tyrosinase (TyB) have been the subjects of intense biochemical and structural studies, including X-ray diffraction analysis, and this has led to the identification of structural homology and divergence among enzymes from different sources. To better understand the behavior of potential inhibitors of TyM and TyB, we selected the aurone family-previously identified as potential inhibitors of melanin biosynthesis in human melanocytes. In this study, a series of 24 aurones with different hydroxylation patterns at the A- and B-rings were evaluated on TyM and TyB. The results show that, depending on the hydroxylation pattern of A- and B-rings, aurones can behave as inhibitors, substrates, and activators of both enzymes. Computational analysis was performed to identify residues surrounding the aurones in the active sites of both enzymes and to rationalize the interactions. Our results highlight similarities and divergence in the behavior of TyM and TyB toward the same set of molecules.
Assuntos
Agaricus/enzimologia , Benzofuranos/farmacologia , Inibidores Enzimáticos/farmacologia , Monofenol Mono-Oxigenase/antagonistas & inibidores , Streptomyces antibioticus/enzimologia , Benzofuranos/química , Sítios de Ligação/efeitos dos fármacos , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/química , Modelos Moleculares , Estrutura Molecular , Monofenol Mono-Oxigenase/metabolismo , Relação Estrutura-AtividadeRESUMO
An unambiguous picture of the interaction between the inhibitor kojic acid and a model of the dicopper active site of tyrosinase is reported. The observed binding mode probed on bacterial enzyme is confirmed and further refined by QM/MM calculations.
Assuntos
Modelos Moleculares , Monofenol Mono-Oxigenase/metabolismo , Pironas/metabolismo , Domínio Catalítico , Complexos de Coordenação/química , Complexos de Coordenação/metabolismo , Cristalografia por Raios X , Conformação Molecular , Monofenol Mono-Oxigenase/antagonistas & inibidores , Ligação Proteica , Pironas/química , Teoria Quântica , Streptomyces/enzimologiaRESUMO
The deciphering of the binding mode of tyrosinase (Ty) inhibitors is essential to understand how to regulate the tyrosinase activity. In this paper, by combining experimental and theoretical methods, we studied an unsymmetrical tyrosinase functional model and its interaction with 2-hydroxypyridine-N-oxide (HOPNO), a new and efficient competitive inhibitor for bacterial Ty. The tyrosinase model was a dinuclear copper complex bridged by a chelated ring with two different complexing arms (namely (bis(2-ethylpyridyl)amino)methyl and (bis(2-methylpyridyl)amino)methyl). The geometrical asymmetry of the complex induces an unsymmetrical binding of HOPNO. Comparisons have been made with the binding modes obtained on similar symmetrical complexes. Finally, by using quantum mechanics/molecular mechanics (QM/MM) calculations, we studied the binding mode in tyrosinase from a bacterial source. A new unsymmetrical binding mode was obtained, which was linked to the second coordination sphere of the enzyme.
Assuntos
Óxidos N-Cíclicos/farmacologia , Inibidores Enzimáticos/farmacologia , Monofenol Mono-Oxigenase/antagonistas & inibidores , Compostos Organometálicos/farmacologia , Piridinas/farmacologia , Sítios de Ligação , Óxidos N-Cíclicos/química , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Modelos Moleculares , Estrutura Molecular , Monofenol Mono-Oxigenase/metabolismo , Compostos Organometálicos/síntese química , Compostos Organometálicos/química , Piridinas/química , Teoria Quântica , Relação Estrutura-AtividadeRESUMO
Elucidation of the binding modes of Ty inhibitors is an important step for in-depth studies on how to regulate tyrosinase activity. In this paper we highlight the extraordinarily versatile effects of the aurone structure on mushroom Ty activity. Depending on the position of the OH group on the B-ring, aurones can behave either as substrates or as hyperbolic activators. The synthesis of a hybrid aurone through combination of an aurone moiety with HOPNO (2-hydroxypyridine N-oxide), a good metal chelate, led us to a new, efficient, mixed inhibitor for mushroom tyrosinase. Another important feature pointed out by our study is the presence of more than one site for aurone compounds on mushroom tyrosinase. Because study of the binding of the hybrid aurone was difficult to perform with the enzyme, we undertook binding studies with tyrosinase functional models in order to elucidate the binding mode (chelating vs. bridging) on a dicopper(II) center. Use of EPR combined with theoretical DFT calculations allowed us to propose a preferred chelating mode for the interaction of the hybrid aurone with a dicopper(II) center.
Assuntos
Agaricales/enzimologia , Benzofuranos/farmacologia , Inibidores Enzimáticos/farmacologia , Monofenol Mono-Oxigenase/antagonistas & inibidores , Benzofuranos/síntese química , Benzofuranos/química , Óxidos N-Cíclicos/química , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Modelos Moleculares , Estrutura Molecular , Monofenol Mono-Oxigenase/química , Monofenol Mono-Oxigenase/metabolismo , Piridinas/química , Estereoisomerismo , Relação Estrutura-AtividadeRESUMO
We describe 2-mercaptopyridine-N-oxide (HSPNO) as a new and efficient competitive inhibitor of mushroom tyrosinase (K(IC) =3.7 µM). Binding studies of HSPNO and 2-hydroxypyridine-N-oxide (HOPNO) on dinuclear copper(II) complexes [Cu(2)(BPMP)(µ-OH)](ClO(4))(2) (1; HBPMP=2,6-bis[bis(2-pyridylmethyl)aminomethyl]-4-methylphenol) and [Cu(2)(BPEP)(µ-OH)](ClO(4))(2)) (2; HBPEP=2,6-bis{bis[2-(2-pyridyl)ethyl]aminomethyl}-4-methylphenol), known to be functional models for the tyrosinase diphenolase activity, have been performed. A combination of structural data, spectroscopic studies, and DFT calculations evidenced the adaptable binding mode (bridging versus chelating) of HOPNO in relation to the geometry and chelate size of the dicopper center. For comparison, binding studies of HSPNO and kojic acid (5-hydroxy-2-(hydroxymethyl)-4-pyrone) on dinuclear complexes were performed. A theoretical approach has been developed and validated on HOPNO adducts to compare the binding mode on the model complexes. It has been applied for HSPNO and kojic acid. Although results for HSPNO were in line with those obtained with HOPNO, thus reflecting their chemical similarity, we showed that the bridging mode was the most preferential binding mode for kojic acid on both complexes.