Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 2020 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-31984742

RESUMO

Boron-cross-linked cobalt(II) pseudoclathrochelate was obtained by the template reaction of 2-acetylpyrazoloxime, phenylboronic acid, and a new DMF cobalt(II) solvato complex with a decachloro-closo-decaborate dianion. As confirmed by single-crystal X-ray diffraction, this complex crystallizes with two symmetry-independent cobalt(II) pseudoclathrochelate cations, one decachloro-closo-decaborate dianion, one benzene, one dichloromethane solvent molecule, and two molecules of DMF. The latter act as pseudocapping fragments to the monocapped tris-pyrazoloximate ligands by forming N-H···O hydrogen bonds with their pyrazole groups. The CoIIN6-coordination polyhedra adopt a nearly ideal TP geometry with distortion angles φ equal to 1.22(16) and 2.58(17)° for two symmetry-independent pseudoclathrochelate cations, both containing the encapsulated cobalt(II) ion in its high-spin state (Co-N 2.115(4)-2.198(3) Å). Magnetic properties of this complex were studied both by dc-magnetometry and by solution-state NMR spectroscopy to reveal a high magnetic anisotropy, thus suggesting a large magnetic susceptibility tensor anisotropy (25.8 × 10-32 m3 at 298 K) and a large negative zero-field splitting energy (-85 cm-1). The results of magnetometry studies in the ac magnetic field suggest a single molecule magnet behavior of this TP complex with an effective magnetization reversal barrier of approximately 130 cm-1. Its pseudocapping DMF molecules that form H-bonds with tris-pyrazoloximate fragments are easy to substitute by strong H-bond acceptors, such as chloride ions and di- and tetramethylureas, thus affecting the magnetic properties of a whole pseudomacrobicyclic paramagnetic system.

2.
Chemphyschem ; 20(8): 1001-1005, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30897255

RESUMO

Herein, we report a new trigonal prismatic cobalt(II) complex that behaves as a single molecule magnet. The obtained zero-field splitting, which is also directly accessed by THz-EPR spectroscopy (-102.5 cm-1 ), results in a large magnetization reversal barrier U of 205 cm-1 . Its effective value, however, is much lower (101 cm-1 ), even though there is practically no contribution from quantum tunneling to magnetization relaxation.

3.
Chem Commun (Camb) ; 54(28): 3436-3439, 2018 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-29424850

RESUMO

The first synthesized and X-ray structurally characterized "classical" iron(i) dioximate showed an unrivaled stability towards strong acids, thus calling for a reassessment of the origins of the electrocatalytic activity of similar low-valent cobalt and iron cage complexes with electron-withdrawing ribbed substituents, shown previously to be effective electrocatalysts of the HER.

4.
ACS Omega ; 3(5): 4941-4946, 2018 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-31458710

RESUMO

Variable-temperature NMR spectroscopy has recently emerged as a new alternative to the magnetometry methods for studying single molecule magnets. Its use is based on an accurate determination of magnetic susceptibility tensor anisotropy Δχ, which is not always achievable due to some contact contribution to NMR chemical shifts and possible conformational dynamics. Here, we applied this approach to cholesteryl-substituted cage cobalt(II) complexes featuring a very large magnetic anisotropy. Conformational rigidity and large size of the cholesteryl substituent with many magnetically nonequivalent nuclei resulted in an excellent convergence of experimental and calculated 1H and 13C chemical shifts, thus allowing for the determination of Δχ value for all of the synthesized cobalt(II) complexes with a very high accuracy and providing a more reliable zero-field splitting energy for further calculations.

5.
Inorg Chem ; 56(12): 6943-6951, 2017 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-28541691

RESUMO

High magnetic anisotropy is a key property of paramagnetic shift tags, which are mostly studied by NMR spectroscopy, and of single molecule magnets, for which magnetometry is usually used. We successfully employed both these methods in analyzing magnetic properties of a series of transition metal complexes, the so-called clathrochelates. A cobalt complex was found to be both a promising paramagnetic shift tag and a single molecule magnet because of it having large axial magnetic susceptibility tensor anisotropy at room temperature (22.5 × 10-32 m3 mol-1) and a high effective barrier to magnetization reversal (up to 70.5 cm-1). The origin of this large magnetic anisotropy is a negative value of zero-field splitting energy that reaches -86 cm-1 according to magnetometry and NMR measurements.

6.
ACS Omega ; 2(10): 6852-6862, 2017 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-31457271

RESUMO

The study tackles one of the challenges in developing platinum-free molecular electrocatalysts for hydrogen evolution, which is to seek for new possibilities to ensure large turnover numbers by stabilizing electrocatalytic intermediates. These species are often much more reactive than the initial electrocatalysts, and if not properly stabilized by a suitable choice of functionalizing substituents, they have a limited long-time activity. Here, we describe new iron and cobalt(II) cage complexes (clathrochelates) that in contrast to many previously reported complexes of this type do not act as electrocatalysts for hydrogen evolution. We argue that the most probable reason for this behavior is an excessive stabilization of the metal(I) species by perfluoroaryl ribbed groups, resulting in an unprecedented long-term stability of the metal(I) complexes even in acidic solutions.

7.
J Phys Chem Lett ; 7(20): 4111-4116, 2016 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-27689621

RESUMO

A large barrier to magnetization reversal, a signature of a good single-molecule magnet (SMM), strongly depends on the structural environment of a paramagnetic metal ion. In a crystalline state, where SMM properties are usually measured, this environment is influenced by crystal packing, which may be different for the same chemical compound, as in polymorphs. Here we show that polymorphism can dramatically change the magnetic behavior of an SMM even with a very rigid coordination geometry. For a cobalt(II) clathrochelate, it results in an increase of the effective barrier from 109 to 180 cm-1, the latter value being the largest one reported to date for cobalt-based SMMs. Our finding thus highlights the importance of identifying possible polymorphic phases in search of new, even more efficient SMMs.

8.
Inorg Chem ; 54(12): 5827-38, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-26017024

RESUMO

Template condensation of dichloroglyoxime with n-hexadecylboronic acid on the corresponding metal ion as a matrix under vigorous reaction conditions afforded n-hexadecylboron-capped iron and cobalt(II) hexachloroclathrochelates. The complexes obtained were characterized using elemental analysis, MALDI-TOF mass spectrometry, IR, UV-vis, (1)H and (13)C{(1)H} NMR, (57)Fe Mössbauer spectroscopies, SQUID magnetometry, electron paramagnetic resonance, and cyclic voltammetry (CV) and by X-ray crystallography. The multitemperature single-crystal X-ray diffraction, SQUID magnetometry, and differential scanning calorimetry experiments were performed to study the temperature-induced spin-crossover [for the paramagnetic cobalt(II) complex] and the crystal-to-crystal phase transitions (for both of these clathrochelates) in the solid state. Analysis of their crystal packing using the molecular Voronoi polyhedra and the Hirshfeld surfaces reveals the structural rearrangements of the apical long-chain alkyl substituents resulting from such phase transitions being more pronounced for a macrobicyclic cobalt(II) complex. Its fine-crystalline sample undergoes the gradual and fully reversible spin transition centered at approximately 225 K. The density functional theory calculated parameters for an isolated molecule of this cobalt(II) hexachloroclathrochelate in its low- and high-spin states were found to be in excellent agreement with the experimental data and allowed to localize the spin density within a macrobicyclic framework. CV of the cobalt(II) complex in the cathodic range contains one reversible wave assigned to the Co(2+/+) redox couple with the reduced anionic cobalt(I)-containing species stabilized by the electronic effect of six strong electron-withdrawing chlorine substituents. The quasireversible character of the Fe(2+/+) wave suggests that the anionic iron(I)-containing macrobicyclic species undergo substantial structural changes and side chemical reactions after such metal-centered reduction.

9.
Dalton Trans ; 44(8): 3773-84, 2015 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-25607531

RESUMO

Pentafluorophenylboron-capped iron and cobalt(II) hexachloroclathrochelate precursors were obtained by the one-pot template condensation of dichloroglyoxime with pentafluorophenylboronic acid on iron and cobalt(II) ions under vigorous reaction conditions in trifluoroacetic acid media. These reactive precursors easily undergo nucleophilic substitution with (per)fluoroarylthiolate anions, giving (per)fluoroarylsulfide macrobicyclic complexes with encapsulated iron and cobalt(II) ions; nucleophilic substitution of the cobalt(II) hexachloroclathrochelate precursor with a pentafluorophenylsulfide anion gave the target hexasulfide monoclathrochelate and the mixed-valence Co(III)Co(II)Co(III) bis-clathrochelate as a side product. The complexes obtained were characterized using elemental analysis, MALDI-TOF mass spectrometry, IR, UV-Vis, (57)Fe Mössbauer (for the X-rayed iron complexes), (1)H, (11)B, (13)C and (19)F NMR spectroscopies and by X-ray diffraction; their redox and electrocatalytic behaviors were studied using cyclic voltammetry and gas chromatography. As can be seen from the single-crystal X-ray diffraction data, the second superhydrophobic shell of such caged metal ions is formed by fluorine atoms of both the apical and ribbed (per)fluoroaryl peripheral groups. The main bond distances and chelate N=C-C=N angles in their molecules are similar, but rotational elongation (contraction) along the molecular C3-pseudoaxes, accompanied by changes in the geometry of the corresponding MN6-coordination polyhedra from a trigonal prism to a trigonal antiprism, allowed encapsulating Fe(2+), Co(2+) and Co(3+) ions. The nature of an encapsulated metal ion and its oxidation state affect the M-N bond lengths, and, for cobalt(ii) clathrochelate with an electronic configuration d(7) the Jahn-Teller structural effect is observed as an alternation of the Co-N distances. Pentafluorophenylboron-capped hexachloroclathrochelate precursors, giving stable catalytically active metal(I)-containing intermediates due to the electron-withdrawing effect of their six ribbed chlorine substituents, were found to show moderate electrocatalytic activity in a 2H(+)/H2 hydrogen-forming reaction. In the case of their ribbed-functionalized sulfide derivatives, the strong electron-withdrawing (per)fluoroaryl groups do not stabilize the reduced electrocatalytically active metal(i)-containing species as their mesomeric effect is absent or substantially decreased by steric hindrances between them.

10.
Dalton Trans ; 44(5): 2476-87, 2015 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-25559125

RESUMO

Template condensation of dibromoglyoxime with n-butylboronic acid on the corresponding metal ion as a matrix under vigorous reaction conditions afforded iron and cobalt(ii) hexabromoclathrochelates. The paramagnetic cobalt clathrochelate was found to be a low-spin complex at temperatures below 100 K, with a gradual increase in the effective magnetic moment at higher temperatures due to the temperature 1/2↔3/2 spin crossover and a gap caused by the structure phase transition. The multitemperature X-ray and DSC studies of this complex and its iron(ii)-containing analog also showed temperature structural transitions. The variation of an encapsulated metal ion's radius, electronic structure and spin state caused substantial differences in the geometry of its coordination polyhedron; these differences increase with the decrease in temperature due to Jahn-Teller distortion of the encapsulated cobalt(ii) ion with an electronic configuration d(7). As follows from CV and GC data, these cage iron and cobalt complexes undergo both oxidation and reduction quasireversibly, and showed an electrocatalytic activity for hydrogen production in different producing systems.

11.
Dalton Trans ; 43(48): 17934-48, 2014 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-25056255

RESUMO

Iron(II) dibromo- and diiodoclathrochelates undergo copper(I)-promoted reductive homocoupling in HMPA at 70-80 °C leading to C-C conjugated dibromo- and diiodo-bis-clathrochelates in high yields. Under the same conditions, their dichloroclathrochelate analog does not undergo the same homocoupling reaction, so the target dichloro-bis-cage product was obtained in high yield via dimerization of its heterodihalogenide iodochloromonomacrobicyclic precursor. The use of NMP as a solvent at 120-140 °C gave the mixture of bis-clathrochelates resulting from a tandem homocoupling-hydrodehalogenation reaction: the initial acetonitrile copper(I) solvato-complex at a high temperature underwent re-solvatation and disproportionation leading to Cu(II) ions and nano-copper, which promoted the hydrodehalogenation process even at room temperature. The most probable pathway of this reaction in situ includes hydrodehalogenation of the already formed dihalogeno-bis-clathrochelate via the formation of reduced anion radical intermediates. As a result, chemical transformations of the iron(II) dihalogenoclathrochelates in the presence of an acetonitrile copper(I) solvato-complex were found to depend both on the nature of halogen atoms in their ribbed chelate fragments and on reaction conditions (i.e. solvent and temperature). The C-C conjugated iron(II) dihalogeno-bis-clathrochelates easily undergo nucleophilic substitution with various N,S-nucleophiles giving ribbed-functionalized bis-cage species. These iron(II) complexes were characterized by elemental analysis, MALDI-TOF mass spectrometry, IR, UV-Vis, (1)H and (13)C NMR spectroscopy, and by X-ray diffraction; their electrochemical properties were studied by cyclic voltammetry. The isomeric shift values in (57)Fe Mössbauer spectra of such cage compounds allowed identifying them as low-spin iron(II) complexes, while those of the quadrupole splitting are the evidence for a significant TP distortion of their FeN6-coordination polyhedra. As follows from CV data, the C-C conjugated iron(II) bis-clathrochelates undergo stepwise electrochemical reduction and oxidation giving mixed-valence Fe(II)Fe(I) and Fe(II)Fe(III) bis-cage intermediates.


Assuntos
Complexos de Coordenação/química , Cobre/química , Compostos Ferrosos/química , Carbono/química , Quelantes/química , Complexos de Coordenação/síntese química , Cristalografia por Raios X , Halogenação , Cinética , Conformação Molecular , Oxirredução
12.
J Phys Chem Lett ; 5(21): 3799-803, 2014 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-26278750

RESUMO

Transition-metal complexes are rarely considered as paramagnetic tags for NMR spectroscopy due to them generally having relatively low magnetic anisotropy. Here we report cobalt(II) cage complexes with the largest (among the transition-metal complexes) axial anisotropy of magnetic susceptibility, reaching as high as 12.6 × 10(-32) m(3) at room temperature. This remarkable anisotropy, which results from an unusual trigonal prismatic geometry of the complexes and translates into large negative value of the zero-field splitting energy, is high enough to promote reliable paramagnetic pseudocontact shifts at the distance beyond 2 nm. Our finding paves the way toward the applications of cobalt(II) clathrochelates as future paramagnetic tags. Given the incredible stability and functionalization versatility of clathrochelates, the fine-tuning of the caging ligand may lead to new chemically stable mononuclear single-molecule magnets, for which magnetic anisotropy is of importance.

13.
Dalton Trans ; 42(13): 4373-6, 2013 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-23423515

RESUMO

New macrobicyclic 2-thiopheneboron-capped iron and cobalt(II) tris-dioximates showed high electrocatalytic activity for hydrogen production from H(+) ions. This is the first example of the hydrogen evolution reaction electrocatalyzed by a clathrochelate iron complex, which catalyzes the hydrogen production at low overpotential.

14.
Dalton Trans ; 41(3): 921-8, 2012 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-22086135

RESUMO

Monoribbed-substituted mono- and dicyano-functionalized iron(II) macrobicycles were obtained for the first time by the reaction of iron(II) diiodoclathrochelate precursor with copper(I) cyanide-triphenylphosphine complex under mild conditions. The target dinitrile clathrochelate is a minor product of this reaction, whereas the major product contains only one cyano group. The clathrochelates obtained were characterized using elemental analysis, (1)H and (13)C{(1)H} NMR, IR and UV-vis spectroscopy, MALDI-TOF spectrometry and X-ray diffraction crystallography. The geometry of their FeN(6)-coordination polyhedra is intermediate between a trigonal prism (TP) and a trigonal antiprism (TAP); the distortion angles, φ, are 22.6-24.7°. In the molecule of the precursor, the Fe-N distances are close, whereas in the mononitrile macrobicycles those for their functionalized chelate fragments are substantially smaller than the corresponding distances in the α-benzyldioximate moieties. The heights, h, of the TP-TAP coordination polyhedra and the average bite angles, α, (2.33 Å and 39°, respectively) are the same for the X-rayed clathrochelates. The UV-vis spectra indicate a dramatic redistribution of the electron density in the π-conjugated clathrochelate framework caused by functionalization with inherent nitrile substituents. The proposed mechanism of the dehalogenation-reduction reaction of iron(II) diiodoclathrochelate resulting in substitution of their iodine atoms by a cyano group and hydrogen atom includes the anion-radical hydrodehalogenation of this precursor with acetonitrile as a source of hydrogen atom. Then, the monomethinemonoiodine macrobicyclic product underwent a substitution with a cyano group only. The copper(I) cyanide-triphenylphosphine-acetonitrile system is proposed as a tool for the synthesis of nitrile derivatives of electron-withdrawing heterocycles starting from their halogen-containing precursors.

15.
Inorg Chem ; 47(6): 2155-61, 2008 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-18198864

RESUMO

Clathrochelate iron(II) FeBd 2(S2C2(CN)2Gm)(BF)2 tris-dioximate with a ribbed vic-dinitrile fragment was synthesized as a precursor of the monoribbed-functionalized hybrid phthalocyaninoclathrochelates by nucleophilic substitution of the vic-dichloride FeBd2(Cl2Gm)(BF)2 clathrochelate (1) with the potassium salt of dimercaptomaleodinitrile. Reaction of nitromethane with this salt was followed by the condensation of the reaction products with 1 to yield the clathrochelate with an annulated previously unknown thiazinothiophene heterocyclic system in the ribbed fragment. Both complexes were characterized on the basis of elemental analysis; MALDI-TOF mass spectrometry; IR, UV-vis, (57)Fe Mössbauer, and NMR spectroscopies; and X-ray crystallography.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA