Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 6013, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36224167

RESUMO

Superconductivity was recently discovered in rhombohedral trilayer graphene (RTG) in the absence of a moiré potential. Superconductivity is observed proximate to a metallic state with reduced isospin symmetry, but it remains unknown whether this is a coincidence or a key ingredient for superconductivity. Using a Hartree-Fock analysis and constraints from experiments, we argue that the symmetry breaking is inter-valley coherent (IVC) in nature. We evaluate IVC fluctuations as a possible pairing glue, and find that they lead to chiral unconventional superconductivity when the fluctuations are strong. We further elucidate how the inter-valley Hund's coupling determines the spin-structure of the IVC ground state and breaks the degeneracy between spin-singlet and triplet superconductivity. Remarkably, if the normal state is spin-unpolarized, we find that a ferromagnetic Hund's coupling favors spin-singlet superconductivity, in agreement with experiments. Instead, if the normal state is spin-polarized, then IVC fluctuations lead to spin-triplet pairing.

2.
Nature ; 607(7920): 692-696, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35896649

RESUMO

Doped Mott insulators exhibit some of the most intriguing quantum phases of matter, including quantum spin liquids, unconventional superconductors and non-Fermi liquid metals1-3. Such phases often arise when itinerant electrons are close to a Mott insulating state, and thus experience strong spatial correlations. Proximity between different layers of van der Waals heterostructures naturally realizes a platform for experimentally studying the relationship between localized, correlated electrons and itinerant electrons. Here we explore this relationship by studying the magnetic landscape of tantalum disulfide 4Hb-TaS2, which realizes an alternating stacking of a candidate spin liquid and a superconductor4. We report on a spontaneous vortex phase whose vortex density can be trained in the normal state. We show that time-reversal symmetry is broken in the normal state, indicating the presence of a magnetic phase independent of the superconductor. Notably, this phase does not generate ferromagnetic signals that are detectable using conventional techniques. We use scanning superconducting quantum interference device microscopy to show that it is incompatible with ferromagnetic ordering. The discovery of this unusual magnetic phase illustrates how combining superconductivity with a strongly correlated system can lead to unexpected physics.

3.
Phys Rev Lett ; 128(12): 127702, 2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35394315

RESUMO

In one-dimensional topological superconductors driven periodically with the frequency ω, two types of topological edge modes may appear, the well-known Majorana zero mode and a Floquet Majorana mode located at the quasienergy ℏω/2. We investigate two Josephson-coupled topological quantum wires in the presence of Coulomb interactions, forming a so-called Majorana box qubit. An oscillating gate voltage can induce Floquet Majorana modes in both wires. This allows for the encoding of three qubits in a sector with fixed electron parity. If such a system is prepared by increasing the amplitude of oscillations adiabatically, it is inherently unstable as interactions resonantly create quasiparticles. This can be avoided by using instead a protocol where the oscillation frequency is increased slowly. In this case, one can find a parameter regime where the system remains stable.

4.
Phys Rev Lett ; 128(5): 056801, 2022 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-35179934

RESUMO

We consider the stability of fragile topological bands protected by space-time inversion symmetry in the presence of strong electron-electron interactions. At the single-particle level, the topological nature of the bands prevents the opening of a gap between them. In contrast, we show that when the fragile bands are half filled, interactions can open a gap in the many-body spectrum without breaking any symmetry or mixing degrees of freedom from remote bands. Furthermore, the resulting ground state is not topologically ordered. Thus, a fragile topological band structure does not present an obstruction to forming a "featureless insulator" ground state. Our construction relies on the formation of fermionic bound states of two electrons and one hole known as "trions." The trions form a band whose coupling to the electronic band enables the gap opening. This result may be relevant to the gapped state indicated by recent experiments in magic angle twisted bilayer graphene at charge neutrality.

6.
Phys Rev Lett ; 127(24): 247001, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34951779

RESUMO

We show that in a two-dimensional electron gas with an annular Fermi surface, long-range Coulomb interactions can lead to unconventional superconductivity by the Kohn-Luttinger mechanism. Superconductivity is strongly enhanced when the inner and outer Fermi surfaces are close to each other. The most prevalent state has chiral p-wave symmetry, but d-wave and extended s-wave pairing are also possible. We discuss these results in the context of rhombohedral trilayer graphene, where superconductivity was recently discovered in regimes where the normal state has an annular Fermi surface. Using realistic parameters, our mechanism can account for the order of magnitude of T_{c}, as well as its trends as a function of electron density and perpendicular displacement field. Moreover, it naturally explains some of the outstanding puzzles in this material, that include the weak temperature dependence of the resistivity above T_{c}, and the proximity of spin singlet superconductivity to the ferromagnetic phase.

7.
Phys Rev Lett ; 127(24): 247703, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34951791

RESUMO

We introduce and analyze a model that sheds light on the interplay between correlated insulating states, superconductivity, and flavor-symmetry breaking in magic angle twisted bilayer graphene. Using a variational mean-field theory, we determine the normal-state phase diagram of our model as a function of the band filling. The model features robust insulators at even integer fillings, occasional weaker insulators at odd integer fillings, and a pattern of flavor-symmetry breaking at noninteger fillings. Adding a phonon-mediated intervalley retarded attractive interaction, we obtain strong-coupling superconducting domes, whose structure is in qualitative agreement with experiments. Our model elucidates how the intricate form of the interactions and the particle-hole asymmetry of the electronic structure determine the phase diagram. It also explains how subtle differences between devices may lead to the different behaviors observed experimentally. A similar model can be applied with minor modifications to other moiré systems, such as twisted trilayer graphene.

8.
Phys Rev Lett ; 127(1): 017601, 2021 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-34270320

RESUMO

We investigate the specific heat c, near an Ising nematic quantum critical point (QCP), using sign problem-free quantum Monte Carlo simulations. Cooling towards the QCP, we find a broad regime of temperature where c/T is close to the value expected from the noninteracting band structure, even for a moderately large coupling strength. At lower temperature, we observe a rapid rise of c/T, followed by a drop to zero as the system becomes superconducting. The spin susceptibility begins to drop at roughly the same temperature where the enhancement of c/T onsets, most likely due to the opening of a gap associated with superconducting fluctuations. These findings suggest that superconductivity and non-Fermi liquid behavior (manifested in an enhancement of the effective mass) onset at comparable energy scales. We support these conclusions with an analytical perturbative calculation.

9.
Nature ; 592(7853): 214-219, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33828314

RESUMO

In the 1950s, Pomeranchuk1 predicted that, counterintuitively, liquid 3He may solidify on heating. This effect arises owing to high excess nuclear spin entropy in the solid phase, where the atoms are spatially localized. Here we find that an analogous effect occurs in magic-angle twisted bilayer graphene2-6. Using both local and global electronic entropy measurements, we show that near a filling of one electron per moiré unit cell, there is a marked increase in the electronic entropy to about 1kB per unit cell (kB is the Boltzmann constant). This large excess entropy is quenched by an in-plane magnetic field, pointing to its magnetic origin. A sharp drop in the compressibility as a function of the electron density, associated with a reset of the Fermi level back to the vicinity of the Dirac point, marks a clear boundary between two phases. We map this jump as a function of electron density, temperature and magnetic field. This reveals a phase diagram that is consistent with a Pomeranchuk-like temperature- and field-driven transition from a low-entropy electronic liquid to a high-entropy correlated state with nearly free magnetic moments. The correlated state features an unusual combination of seemingly contradictory properties, some associated with itinerant electrons-such as the absence of a thermodynamic gap, metallicity and a Dirac-like compressibility-and others associated with localized moments, such as a large entropy and its disappearance under a magnetic field. Moreover, the energy scales characterizing these two sets of properties are very different: whereas the compressibility jump has an onset at a temperature of about 30 kelvin, the bandwidth of magnetic excitations is about 3 kelvin or smaller. The hybrid nature of the present correlated state and the large separation of energy scales have implications for the thermodynamic and transport properties of the correlated states in twisted bilayer graphene.

10.
Nature ; 592(7853): 220-224, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33828322

RESUMO

In condensed-matter systems, higher temperatures typically disfavour ordered phases, leading to an upper critical temperature for magnetism, superconductivity and other phenomena. An exception is the Pomeranchuk effect in 3He, in which the liquid ground state freezes upon increasing the temperature1, owing to the large entropy of the paramagnetic solid phase. Here we show that a similar mechanism describes the finite-temperature dynamics of spin and valley isospins in magic-angle twisted bilayer graphene2. Notably, a resistivity peak appears at high temperatures near a superlattice filling factor of -1, despite no signs of a commensurate correlated phase appearing in the low-temperature limit. Tilted-field magnetotransport and thermodynamic measurements of the in-plane magnetic moment show that the resistivity peak is connected to a finite-field magnetic phase transition3 at which the system develops finite isospin polarization. These data are suggestive of a Pomeranchuk-type mechanism, in which the entropy of disordered isospin moments in the ferromagnetic phase stabilizes the phase relative to an isospin-unpolarized Fermi liquid phase at higher temperatures. We find the entropy, in units of Boltzmann's constant, to be of the order of unity per unit cell area, with a measurable fraction that is suppressed by an in-plane magnetic field consistent with a contribution from disordered spins. In contrast to 3He, however, no discontinuities are observed in the thermodynamic quantities across this transition. Our findings imply a small isospin stiffness4,5, with implications for the nature of finite-temperature electron transport6-8, as well as for the mechanisms underlying isospin ordering and superconductivity9,10 in twisted bilayer graphene and related systems.

11.
Nat Commun ; 12(1): 5299, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34489409

RESUMO

Floquet engineering uses coherent time-periodic drives to realize designer band structures on-demand, thus yielding a versatile approach for inducing a wide range of exotic quantum many-body phenomena. Here we show how this approach can be used to induce non-equilibrium correlated states with spontaneously broken symmetry in lightly doped semiconductors. In the presence of a resonant driving field, the system spontaneously develops quantum liquid crystalline order featuring strong anisotropy whose directionality rotates as a function of time. The phase transition occurs in the steady state of the system achieved due to the interplay between the coherent external drive, electron-electron interactions, and dissipative processes arising from the coupling to phonons and the electromagnetic environment. We obtain the phase diagram of the system using numerical calculations that match predictions obtained from a phenomenological treatment and discuss the conditions on the system and the external drive under which spontaneous symmetry breaking occurs. Our results demonstrate that coherent driving can be used to induce non-equilibrium quantum phases of matter with dynamical broken symmetry.

12.
Nature ; 598(7881): 429-433, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34469943

RESUMO

Ferromagnetism is most common in transition metal compounds where electrons occupy highly localized d orbitals. However, ferromagnetic order may also arise in low-density two-dimensional electron systems1-5. Here we show that gate-tuned van Hove singularities in rhombohedral trilayer graphene6 drive spontaneous ferromagnetic polarization of the electron system into one or more spin and valley flavours. Using capacitance and transport measurements, we observe a cascade of transitions tuned to the density and electronic displacement field between phases in which quantum oscillations have fourfold, twofold or onefold degeneracy, associated with a spin- and valley-degenerate normal metal, spin-polarized 'half-metal', and spin- and valley-polarized 'quarter-metal', respectively. For electron doping, the salient features of the data are well captured by a phenomenological Stoner model7 that includes valley-anisotropic interactions. For hole filling, we observe a richer phase diagram featuring a delicate interplay of broken symmetries and transitions in the Fermi surface topology. Finally, we introduce a moiré superlattice using a rotationally aligned hexagonal boron nitride substrate5,8. Remarkably, we find that the isospin order is only weakly perturbed, with the moiré potential catalysing the formation of topologically nontrivial gapped states whenever itinerant half- or quarter-metal states occur at half- or quarter-superlattice band filling. Our results show that rhombohedral graphene is an ideal platform for well-controlled tests of many-body theory, and reveal magnetism in moiré materials4,5,9,10 to be fundamentally itinerant in nature.

13.
Proc Natl Acad Sci U S A ; 117(6): 2852-2857, 2020 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-31980534

RESUMO

The bilayer perovskite Sr3Ru2O7 has been widely studied as a canonical strange metal. It exhibits T-linear resistivity and a T log(1/T) electronic specific heat in a field-tuned quantum critical fan. Criticality is known to occur in "hot" Fermi pockets with a high density of states close to the Fermi energy. We show that while these hot pockets occupy a small fraction of the Brillouin zone, they are responsible for the anomalous transport and thermodynamics of the material. Specifically, a scattering process in which two electrons from the large, "cold" Fermi surfaces scatter into one hot and one cold electron renders the ostensibly noncritical cold fermions a marginal Fermi liquid. From this fact the transport and thermodynamic phase diagram is reproduced in detail. Finally, we show that the same scattering mechanism into hot electrons that are instead localized near a 2D van Hove singularity explains the anomalous transport observed in strained Sr2RuO4.

14.
Phys Rev Lett ; 125(24): 247001, 2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33412040

RESUMO

High-temperature superconductivity emerges in many different quantum materials, often in regions of the phase diagram where the electronic kinetic energy is comparable to the electron-electron repulsion. Describing such intermediate-coupling regimes has proven challenging as standard perturbative approaches are inapplicable. Here, we employ quantum Monte Carlo methods to solve a multiband Hubbard model that does not suffer from the sign problem and in which only repulsive interband interactions are present. In contrast to previous sign-problem-free studies, we treat magnetic, superconducting, and charge degrees of freedom on an equal footing. We find an antiferromagnetic dome accompanied by a metal-to-insulator crossover line in the intermediate-coupling regime, with a smaller superconducting dome appearing in the metallic region. Across the antiferromagnetic dome, the magnetic fluctuations change from overdamped in the metallic region to propagating in the insulating region. Our findings shed new light on the intertwining between superconductivity, magnetism, and charge correlations in quantum materials.

15.
Phys Rev Lett ; 122(10): 107701, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30932673

RESUMO

We consider the one-dimensional (1D) topological superconductor that may form in a planar superconductor-metal-superconductor Josephson junction in which the metal is subjected to spin-orbit coupling and to an in-plane magnetic field. This 1D topological superconductor has been the subject of recent theoretical and experimental attention. We examine the effect of a perpendicular magnetic field and a supercurrent driven across the junction on the position and structure of the Majorana zero modes that are associated with the topological superconductor. In particular, we show that under certain conditions the Josephson vortices fractionalize to half-vortices, each carrying half of the superconducting flux quantum and a single Majorana zero mode. Furthermore, we show that the system allows for a current-controlled braiding of Majorana zero modes.

16.
Nature ; 569(7754): 89-92, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31019303

RESUMO

Majorana zero modes-quasiparticle states localized at the boundaries of topological superconductors-are expected to be ideal building blocks for fault-tolerant quantum computing1,2. Several observations of zero-bias conductance peaks measured by tunnelling spectroscopy above a critical magnetic field have been reported as experimental indications of Majorana zero modes in superconductor-semiconductor nanowires3-8. On the other hand, two-dimensional systems offer the alternative approach of confining Majorana channels within planar Josephson junctions, in which the phase difference φ between the superconducting leads represents an additional tuning knob that is predicted to drive the system into the topological phase at lower magnetic fields than for a system without phase bias9,10. Here we report the observation of phase-dependent zero-bias conductance peaks measured by tunnelling spectroscopy at the end of Josephson junctions realized on a heterostructure consisting of aluminium on indium arsenide. Biasing the junction to φ ≈ π reduces the critical field at which the zero-bias peak appears, with respect to φ = 0. The phase and magnetic-field dependence of the zero-energy states is consistent with a model of Majorana zero modes in finite-size Josephson junctions. As well as providing experimental evidence of phase-tuned topological superconductivity, our devices are compatible with superconducting quantum electrodynamics architectures11 and are scalable to the complex geometries needed for topological quantum computing9,12,13.

17.
Phys Rev Lett ; 120(24): 247002, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-29956998

RESUMO

We investigate the interplay between charge order and superconductivity near an antiferromagnetic quantum critical point using sign-problem-free Quantum Monte Carlo simulations. We establish that, when the electronic dispersion is particle-hole symmetric, the system has an emergent SU(2) symmetry that implies a degeneracy between d-wave superconductivity and charge order with d-wave form factor. Deviations from particle-hole symmetry, however, rapidly lift this degeneracy, despite the fact that the SU(2) symmetry is preserved at low energies. As a result, we find a strong suppression of charge order caused by the competing, leading superconducting instability. Across the antiferromagnetic phase transition, we also observe a shift in the charge order wave vector from diagonal to axial. We discuss the implications of our results to the universal phase diagram of antiferromagnetic quantum-critical metals and to the elucidation of the charge order experimentally observed in the cuprates.

18.
Phys Rev Lett ; 119(18): 186801, 2017 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-29219581

RESUMO

We study micromotion in two-dimensional periodically driven systems in which all bulk Floquet eigenstates are localized by disorder. We show that this micromotion gives rise to a quantized time-averaged orbital magnetization density in any region completely filled with fermions. The quantization of magnetization density has a topological origin, and reveals the physical nature of the new phase identified in P. Titum, E. Berg, M. S. Rudner, G. Refael, and N. H. Lindner [Phys. Rev. X 6, 021013 (2016)PRXHAE2160-330810.1103/PhysRevX.6.021013]. We thus establish that the topological index of this phase can be accessed directly in bulk measurements, and propose an experimental protocol to do so using interferometry in cold-atom-based realizations.

19.
Proc Natl Acad Sci U S A ; 114(51): 13430-13434, 2017 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-29208710

RESUMO

The paradigmatic example of a continuous quantum phase transition is the transverse field Ising ferromagnet. In contrast to classical critical systems, whose properties depend only on symmetry and the dimension of space, the nature of a quantum phase transition also depends on the dynamics. In the transverse field Ising model, the order parameter is not conserved, and increasing the transverse field enhances quantum fluctuations until they become strong enough to restore the symmetry of the ground state. Ising pseudospins can represent the order parameter of any system with a twofold degenerate broken-symmetry phase, including electronic nematic order associated with spontaneous point-group symmetry breaking. Here, we show for the representative example of orbital-nematic ordering of a non-Kramers doublet that an orthogonal strain or a perpendicular magnetic field plays the role of the transverse field, thereby providing a practical route for tuning appropriate materials to a quantum critical point. While the transverse fields are conjugate to seemingly unrelated order parameters, their nontrivial commutation relations with the nematic order parameter, which can be represented by a Berry-phase term in an effective field theory, intrinsically intertwine the different order parameters.

20.
Phys Rev Lett ; 119(14): 147704, 2017 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-29053312

RESUMO

We show that carbon nanotubes (CNT) can be driven through a topological phase transition using either strain or a magnetic field. This can naturally lead to Jackiw-Rebbi soliton states carrying fractionalized charges, similar to those found in a domain wall in the Su-Schrieffer-Heeger model, in a setup with a spatially inhomogeneous strain and an axial field. Two types of fractionalized states can be formed at the interface between regions with different strain: a spin-charge separated state with integer charge and spin zero (or zero charge and spin ±â„/2), and a state with charge ±e/2 and spin ±â„/4. The latter state requires spin-orbit coupling in the CNT. We show that in our setup, the precise quantization of the fractionalized interface charges is a consequence of the symmetry of the CNT under a combination of a spatial rotation by π and time reversal.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...