Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 154
Filtrar
1.
Mol Cell ; 2021 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-33823140

RESUMO

Nuclear speckles are prominent nuclear bodies that contain proteins and RNA involved in gene expression. Although links between nuclear speckles and gene activation are emerging, the mechanisms regulating association of genes with speckles are unclear. We find that speckle association of p53 target genes is driven by the p53 transcription factor. Focusing on p21, a key p53 target, we demonstrate that speckle association boosts expression by elevating nascent RNA amounts. p53-regulated speckle association did not depend on p53 transactivation functions but required an intact proline-rich domain and direct DNA binding, providing mechanisms within p53 for regulating gene-speckle association. Beyond p21, a substantial subset of p53 targets have p53-regulated speckle association. Strikingly, speckle-associating p53 targets are more robustly activated and occupy a distinct niche of p53 biology compared with non-speckle-associating p53 targets. Together, our findings illuminate regulated speckle association as a mechanism used by a transcription factor to boost gene expression.

2.
Cell Host Microbe ; 29(3): 313-315, 2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33705698

RESUMO

RNA expression of endogenous retroviral elements poses a threat to the genome and to cell function, which may ultimately result in disease. Recently published in Nature, Chelmicki and colleagues (2021) identify m6A mRNA methylation as a form of regulation to defend the cell against these attacks.

3.
Cell ; 184(5): 1262-1280.e22, 2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33636129

RESUMO

Improving effector activity of antigen-specific T cells is a major goal in cancer immunotherapy. Despite the identification of several effector T cell (TEFF)-driving transcription factors (TFs), the transcriptional coordination of TEFF biology remains poorly understood. We developed an in vivo T cell CRISPR screening platform and identified a key mechanism restraining TEFF biology through the ETS family TF, Fli1. Genetic deletion of Fli1 enhanced TEFF responses without compromising memory or exhaustion precursors. Fli1 restrained TEFF lineage differentiation by binding to cis-regulatory elements of effector-associated genes. Loss of Fli1 increased chromatin accessibility at ETS:RUNX motifs, allowing more efficient Runx3-driven TEFF biology. CD8+ T cells lacking Fli1 provided substantially better protection against multiple infections and tumors. These data indicate that Fli1 safeguards the developing CD8+ T cell transcriptional landscape from excessive ETS:RUNX-driven TEFF cell differentiation. Moreover, genetic deletion of Fli1 improves TEFF differentiation and protective immunity in infections and cancer.

4.
Biochim Biophys Acta Gene Regul Mech ; 1864(2): 194669, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33338653

RESUMO

One of the major advances in our understanding of gene regulation in eukaryotes was the discovery of factors that regulate transcription by controlling chromatin structure. Prominent among these discoveries was the demonstration that Gcn5 is a histone acetyltransferase, establishing a direct connection between transcriptional activation and histone acetylation. This breakthrough was soon followed by the purification of a protein complex that contains Gcn5, the SAGA complex. In this article, we review the early genetic and biochemical experiments that led to the discovery of SAGA and the elucidation of its multiple activities.

5.
Autophagy ; 2020 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-33292048

RESUMO

Macroautophagic/autophagic degradation of nuclear components (or nuclear autophagy) is a poorly understood area in autophagy research. We previously reported the nuclear lamina protein LMNB1 (lamin B1) as a nuclear autophagy substrate in primary human cells, stimulating the investigation of nuclear autophagy in the mammalian system. We recently reported the sirtuin protein SIRT1 as a new selective substrate of nuclear autophagy in senescence and aging. Upon senescence of primary human cells, SIRT1 degradation is mediated by a direct nuclear SIRT1-LC3 interaction, followed by nucleus-to-cytoplasm shuttling of SIRT1 and autophagosome-lysosome degradation. In vivo, SIRT1 is downregulated by lysosomes in hematopoietic and immune organs upon natural aging in mice and in aged human T cells. Our study identified another substrate of nuclear autophagy and suggests a new strategy to promote SIRT1-mediated health benefits by suppressing its autophagic degradation.

6.
Science ; 370(6517): 660-662, 2020 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-33154125
8.
Nat Cell Biol ; 22(10): 1170-1179, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32989246

RESUMO

SIRT1 (Sir2) is an NAD+-dependent deacetylase that plays critical roles in a broad range of biological events, including metabolism, the immune response and ageing1-5. Although there is strong interest in stimulating SIRT1 catalytic activity, the homeostasis of SIRT1 at the protein level is poorly understood. Here we report that macroautophagy (hereafter referred to as autophagy), a catabolic membrane trafficking pathway that degrades cellular components through autophagosomes and lysosomes, mediates the downregulation of mammalian SIRT1 protein during senescence and in vivo ageing. In senescence, nuclear SIRT1 is recognized as an autophagy substrate and is subjected to cytoplasmic autophagosome-lysosome degradation, via the autophagy protein LC3. Importantly, the autophagy-lysosome pathway contributes to the loss of SIRT1 during ageing of several tissues related to the immune and haematopoietic system in mice, including the spleen, thymus, and haematopoietic stem and progenitor cells, as well as in CD8+CD28- T cells from aged human donors. Our study reveals a mechanism in the regulation of the protein homeostasis of SIRT1 and suggests a potential strategy to stabilize SIRT1 to promote productive ageing.

9.
Nat Genet ; 52(10): 1024-1035, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32989324

RESUMO

Protein aggregation is the hallmark of neurodegeneration, but the molecular mechanisms underlying late-onset Alzheimer's disease (AD) are unclear. Here we integrated transcriptomic, proteomic and epigenomic analyses of postmortem human brains to identify molecular pathways involved in AD. RNA sequencing analysis revealed upregulation of transcription- and chromatin-related genes, including the histone acetyltransferases for H3K27ac and H3K9ac. An unbiased proteomic screening singled out H3K27ac and H3K9ac as the main enrichments specific to AD. In turn, epigenomic profiling revealed gains in the histone H3 modifications H3K27ac and H3K9ac linked to transcription, chromatin and disease pathways in AD. Increasing genome-wide H3K27ac and H3K9ac in a fly model of AD exacerbated amyloid-ß42-driven neurodegeneration. Together, these findings suggest that AD involves a reconfiguration of the epigenome, wherein H3K27ac and H3K9ac affect disease pathways by dysregulating transcription- and chromatin-gene feedback loops. The identification of this process highlights potential epigenetic strategies for early-stage disease treatment.


Assuntos
Doença de Alzheimer/genética , Agregação Patológica de Proteínas/genética , Proteoma/genética , Transcriptoma/genética , Acetilação , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/genética , Cromatina/genética , Epigenoma/genética , Histona Acetiltransferases/genética , Código das Histonas/genética , Histonas/genética , Humanos , Fragmentos de Peptídeos/genética , Agregação Patológica de Proteínas/patologia , Transdução de Sinais/genética , Ativação Transcricional/genética
10.
Epigenetics Chromatin ; 13(1): 35, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32933557

RESUMO

BACKGROUND: Gametes are highly differentiated cells specialized to carry and protect the parental genetic information. During male germ cell maturation, histone proteins undergo distinct changes that result in a highly compacted chromatin organization. Technical difficulties exclude comprehensive analysis of precise histone mutations during mammalian spermatogenesis. The model organism Saccharomyces cerevisiae possesses a differentiation pathway termed sporulation which exhibits striking similarities to mammalian spermatogenesis. This study took advantage of this yeast pathway to first perform systematic mutational and proteomics screens on histones, revealing amino acid residues which are essential for the formation of spores. METHODS: A systematic mutational screen has been performed on the histones H2A and H2B, generating ~ 250 mutants using two genetic backgrounds and assessing their ability to form spores. In addition, histones were purified at key stages of sporulation and post-translational modifications analyzed by mass spectrometry. RESULTS: The mutation of 75 H2A H2B residues affected sporulation, many of which were localized to the nucleosome lateral surface. The use of different genetic backgrounds confirmed the importance of many of the residues, as 48% of yeast histone mutants exhibited impaired formation of spores in both genetic backgrounds. Extensive proteomic analysis identified 67 unique post-translational modifications during sporulation, 27 of which were previously unreported in yeast. Furthermore, 33 modifications are located on residues that were found to be essential for efficient sporulation in our genetic mutation screens. The quantitative analysis of these modifications revealed a massive deacetylation of all core histones during the pre-meiotic phase and a close interplay between H4 acetylation and methylation during yeast sporulation. Methylation of H2BK37 was also identified as a new histone marker of meiosis and the mouse paralog, H2BK34, was also enriched for methylation during meiosis in the testes, establishing conservation during mammalian spermatogenesis. CONCLUSION: Our results demonstrate that a combination of genetic and proteomic approaches applied to yeast sporulation can reveal new aspects of chromatin signaling pathways during mammalian spermatogenesis.

11.
Sci Adv ; 6(34): eaba9869, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32875108

RESUMO

In social insects, workers and queens arise from the same genome but display profound differences in behavior and longevity. In Harpegnathos saltator ants, adult workers can transition to a queen-like state called gamergate, which results in reprogramming of social behavior and life-span extension. Using single-cell RNA sequencing, we compared the distribution of neuronal and glial populations before and after the social transition. We found that the conversion of workers into gamergates resulted in the expansion of neuroprotective ensheathing glia. Brain injury assays revealed that activation of the damage response gene Mmp1 was weaker in old workers, where the relative frequency of ensheathing glia also declined. On the other hand, long-lived gamergates retained a larger fraction of ensheathing glia and the ability to mount a strong Mmp1 response to brain injury into old age. We also observed molecular and cellular changes suggestive of age-associated decline in ensheathing glia in Drosophila.

12.
Immunity ; 52(6): 897-899, 2020 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-32553177

RESUMO

Most autoimmunity-associated SNPs in the genome map to noncoding regulatory regions in T cells, but the nature of underlying epigenetic mechanisms and any normal purpose in T cell differentiation remain unclear. In this issue of Immunity, Ohkura et al. establish that crucial SNPs linked to autoimmune disease are enriched in DNA regions of CpG demethylation that govern Treg cell development and function.

13.
Genes Dev ; 34(11-12): 745-750, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32381626

RESUMO

DNA methylation is a major silencing mechanism of transposable elements (TEs). Here we report that TEX15, a testis-specific protein, is required for TE silencing. TEX15 is expressed in embryonic germ cells and functions during genome-wide epigenetic reprogramming. The Tex15 mutant exhibits DNA hypomethylation in TEs at a level similar to Mili and Dnmt3c but not Miwi2 mutants. TEX15 is associated with MILI in testis. As loss of Tex15 causes TE desilencing with intact piRNA production, our results identify TEX15 as a new essential epigenetic regulator that may function as a nuclear effector of MILI to silence TEs by DNA methylation.


Assuntos
Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Elementos de DNA Transponíveis/genética , Inativação Gênica/fisiologia , Células Germinativas/metabolismo , Animais , Metilação de DNA , Células Germinativas Embrionárias/metabolismo , Epigênese Genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Masculino , Camundongos , Mutação
14.
Genes Dev ; 34(5-6): 428-445, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-32001510

RESUMO

Cellular senescence is a potent tumor suppressor mechanism but also contributes to aging and aging-related diseases. Senescence is characterized by a stable cell cycle arrest and a complex proinflammatory secretome, termed the senescence-associated secretory phenotype (SASP). We recently discovered that cytoplasmic chromatin fragments (CCFs), extruded from the nucleus of senescent cells, trigger the SASP through activation of the innate immunity cytosolic DNA sensing cGAS-STING pathway. However, the upstream signaling events that instigate CCF formation remain unknown. Here, we show that dysfunctional mitochondria, linked to down-regulation of nuclear-encoded mitochondrial oxidative phosphorylation genes, trigger a ROS-JNK retrograde signaling pathway that drives CCF formation and hence the SASP. JNK links to 53BP1, a nuclear protein that negatively regulates DNA double-strand break (DSB) end resection and CCF formation. Importantly, we show that low-dose HDAC inhibitors restore expression of most nuclear-encoded mitochondrial oxidative phosphorylation genes, improve mitochondrial function, and suppress CCFs and the SASP in senescent cells. In mouse models, HDAC inhibitors also suppress oxidative stress, CCF, inflammation, and tissue damage caused by senescence-inducing irradiation and/or acetaminophen-induced mitochondria dysfunction. Overall, our findings outline an extended mitochondria-to-nucleus retrograde signaling pathway that initiates formation of CCF during senescence and is a potential target for drug-based interventions to inhibit the proaging SASP.


Assuntos
Núcleo Celular/patologia , Senescência Celular/fisiologia , Cromatina/patologia , Citoplasma/patologia , Mitocôndrias/patologia , Transdução de Sinais , Animais , Núcleo Celular/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Humanos , Inflamação/fisiopatologia , Sistema de Sinalização das MAP Quinases/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo
15.
Cancer Discov ; 10(4): 552-567, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32001516

RESUMO

Primary resistance to CD19-directed chimeric antigen receptor T-cell therapy (CART19) occurs in 10% to 20% of patients with acute lymphoblastic leukemia (ALL); however, the mechanisms of this resistance remain elusive. Using a genome-wide loss-of-function screen, we identified that impaired death receptor signaling in ALL led to rapidly progressive disease despite CART19 treatment. This was mediated by an inherent resistance to T-cell cytotoxicity that permitted antigen persistence and was subsequently magnified by the induction of CAR T-cell functional impairment. These findings were validated using samples from two CAR T-cell clinical trials in ALL, where we found that reduced expression of death receptor genes was associated with worse overall survival and reduced T-cell fitness. Our findings suggest that inherent dysregulation of death receptor signaling in ALL directly leads to CAR T-cell failure by impairing T-cell cytotoxicity and promoting progressive CAR T-cell dysfunction. SIGNIFICANCE: Resistance to CART19 is a significant barrier to efficacy in the treatment of B-cell malignancies. This work demonstrates that impaired death receptor signaling in tumor cells causes failed CART19 cytotoxicity and drives CART19 dysfunction, identifying a novel mechanism of antigen-independent resistance to CAR therapy.See related commentary by Green and Neelapu, p. 492.

16.
Mol Cell ; 77(2): 338-351.e6, 2020 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-31732456

RESUMO

Ants acquire distinct morphological and behavioral phenotypes arising from a common genome, underscoring the importance of epigenetic regulation. In Camponotus floridanus, "Major" workers defend the colony, but can be epigenetically reprogrammed to forage for food analogously to "Minor" workers. Here, we utilize reprogramming to investigate natural behavioral specification. Reprogramming of Majors upregulates Minor-biased genes and downregulates Major-biased genes, engaging molecular pathways fundamental to foraging behavior. We discover the neuronal corepressor for element-1-silencing transcription factor (CoREST) is upregulated upon reprogramming and required for the epigenetic switch to foraging. Genome-wide profiling during reprogramming reveals CoREST represses expression of enzymes that degrade juvenile hormone (JH), a hormone elevated upon reprogramming. High CoREST, low JH-degrader expression, and high JH levels are mirrored in natural Minors, revealing parallel mechanisms of natural and reprogrammed foraging. These results unveil chromatin regulation via CoREST as central to programming of ant social behavior, with potential far-reaching implications for behavioral epigenetics.


Assuntos
Formigas/genética , Formigas/fisiologia , Comportamento Animal/fisiologia , Proteínas Correpressoras/genética , Epigênese Genética/genética , Proteínas de Insetos/genética , Animais , Cromatina/genética , Genoma/genética , Hormônios Juvenis/genética , Neurônios/fisiologia , Comportamento Social
17.
Dev Cell ; 51(6): 745-758.e6, 2019 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-31761669

RESUMO

During mammalian spermatogenesis, germ cell chromatin undergoes dramatic histone acetylation-mediated reorganization, whereby 90%-99% of histones are evicted. Given the potential role of retained histones in fertility and embryonic development, the genomic location of retained nucleosomes is of great interest. However, the ultimate position and mechanisms underlying nucleosome eviction or retention are poorly understood, including several studies utilizing micrococcal-nuclease sequencing (MNase-seq) methodologies reporting remarkably dissimilar locations. We utilized assay for transposase accessible chromatin sequencing (ATAC-seq) in mouse sperm and found nucleosome enrichment at promoters but also retention at inter- and intragenic regions and repetitive elements. We further generated germ-cell-specific, conditional knockout mice for the key histone acetyltransferase Gcn5, which resulted in abnormal chromatin dynamics leading to increased sperm histone retention and severe reproductive phenotypes. Our findings demonstrate that Gcn5-mediated histone acetylation promotes chromatin accessibility and nucleosome eviction in spermiogenesis and that loss of histone acetylation leads to defects that disrupt male fertility and potentially early embryogenesis.


Assuntos
Histonas/metabolismo , Nucleossomos/metabolismo , Espermatogênese/fisiologia , Fatores de Transcrição de p300-CBP/metabolismo , Acetilação , Animais , Cromatina/metabolismo , Masculino , Camundongos , Regiões Promotoras Genéticas/genética , Processamento de Proteína Pós-Traducional/fisiologia , Espermatozoides/metabolismo
18.
Immunity ; 51(5): 840-855.e5, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31606264

RESUMO

TCF-1 is a key transcription factor in progenitor exhausted CD8 T cells (Tex). Moreover, this Tex cell subset mediates responses to PD-1 checkpoint pathway blockade. However, the role of the transcription factor TCF-1 in early fate decisions and initial generation of Tex cells is unclear. Single-cell RNA sequencing (scRNA-seq) and lineage tracing identified a TCF-1+Ly108+PD-1+ CD8 T cell population that seeds development of mature Tex cells early during chronic infection. TCF-1 mediated the bifurcation between divergent fates, repressing development of terminal KLRG1Hi effectors while fostering KLRG1Lo Tex precursor cells, and PD-1 stabilized this TCF-1+ Tex precursor cell pool. TCF-1 mediated a T-bet-to-Eomes transcription factor transition in Tex precursors by promoting Eomes expression and drove c-Myb expression that controlled Bcl-2 and survival. These data define a role for TCF-1 in early-fate-bifurcation-driving Tex precursor cells and also identify PD-1 as a protector of this early TCF-1 subset.


Assuntos
Linfócitos T CD8-Positivos/metabolismo , Redes Reguladoras de Genes , Fator 1 de Transcrição de Linfócitos T/metabolismo , Transcrição Genética , Animais , Linfócitos T CD8-Positivos/imunologia , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Doença Crônica , Perfilação da Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Camundongos , Receptor de Morte Celular Programada 1/metabolismo , Fator 1 de Transcrição de Linfócitos T/genética , Viroses/genética , Viroses/imunologia , Viroses/virologia
19.
Nature ; 571(7764): 211-218, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31207603

RESUMO

Exhausted CD8+ T (Tex) cells in chronic infections and cancer have limited effector function, high co-expression of inhibitory receptors and extensive transcriptional changes compared with effector (Teff) or memory (Tmem) CD8+ T cells. Tex cells are important clinical targets of checkpoint blockade and other immunotherapies. Epigenetically, Tex cells are a distinct immune subset, with a unique chromatin landscape compared with Teff and Tmem cells. However, the mechanisms that govern the transcriptional and epigenetic development of Tex cells remain unknown. Here we identify the HMG-box transcription factor TOX as a central regulator of Tex cells in mice. TOX is largely dispensable for the formation of Teff and Tmem cells, but it is critical for exhaustion: in the absence of TOX, Tex cells do not form. TOX is induced by calcineurin and NFAT2, and operates in a feed-forward loop in which it becomes calcineurin-independent and sustained in Tex cells. Robust expression of TOX therefore results in commitment to Tex cells by translating persistent stimulation into a distinct Tex cell transcriptional and epigenetic developmental program.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/patologia , Epistasia Genética , Proteínas de Homeodomínio/metabolismo , Transcrição Genética , Animais , Calcineurina/metabolismo , Sinalização do Cálcio , Retroalimentação Fisiológica , Feminino , Regulação da Expressão Gênica/imunologia , Genótipo , Memória Imunológica , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Fatores de Transcrição NFATC/metabolismo , Evasão Tumoral
20.
Sci Adv ; 5(5): eaaw0946, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31049400

RESUMO

The transcription factor p63 is a key mediator of epidermal development. Point mutations in p63 in patients lead to developmental defects, including orofacial clefting. To date, knowledge on how pivotal the role of p63 is in human craniofacial development is limited. Using an inducible transdifferentiation model, combined with epigenomic sequencing and multicohort meta-analysis of genome-wide association studies data, we show that p63 establishes enhancers at craniofacial development genes to modulate their transcription. Disease-specific substitution mutation in the DNA binding domain or sterile alpha motif protein interaction domain of p63, respectively, eliminates or reduces establishment of these enhancers. We show that enhancers established by p63 are highly enriched for single-nucleotide polymorphisms associated with nonsyndromic cleft lip ± cleft palate (CL/P). These orthogonal approaches indicate a strong molecular link between p63 enhancer function and CL/P, illuminating molecular mechanisms underlying this developmental defect and revealing vital regulatory elements and new candidate causative genes.


Assuntos
Elementos Facilitadores Genéticos/genética , Células Epiteliais/metabolismo , Ossos Faciais/crescimento & desenvolvimento , Crânio/crescimento & desenvolvimento , Fatores de Transcrição/genética , Proteínas Supressoras de Tumor/genética , Encéfalo/anormalidades , Fenda Labial/genética , Fissura Palatina/genética , Fibroblastos/metabolismo , Prepúcio do Pênis/citologia , Estudo de Associação Genômica Ampla , Células HEK293 , Humanos , Fatores de Transcrição Kruppel-Like/metabolismo , Masculino , Mutação Puntual , Polimorfismo de Nucleotídeo Único , Fatores de Transcrição/metabolismo , Transcrição Genética , Transfecção , Proteínas Supressoras de Tumor/metabolismo , Regulação para Cima/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...