Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Neurol ; 12: 706610, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34721255

RESUMO

Background: The EXOPULSE Mollii method is an innovative full-body suit approach for non-invasive electrical stimulation, primarily designed to reduce disabling spasticity and improve motor function through the mechanism of reciprocal inhibition. This study aimed to evaluate the effectiveness of one session of stimulation with the EXOPULSE Mollii suit at different stimulation frequencies on objective signs of spasticity and clinical measures, and the subjective perceptions of the intervention. Methods: Twenty patients in the chronic phase after stroke were enrolled in a cross-over, double-blind controlled study. Electrical stimulation delivered through EXOPULSE Mollii was applied for 60 min at two active frequencies (20 and 30 Hz) and in OFF-settings (placebo) in a randomized order, every second day. Spasticity was assessed with controlled-velocity passive muscle stretches using the NeuroFlexor hand and foot modules. Surface electromyography (EMG) for characterizing flexor carpi radialis, medial gastrocnemius, and soleus muscles activation, Modified Ashworth Scale and range of motion were used as complementary tests. Finally, a questionnaire was used to assess the participants' perceptions of using the EXOPULSE Mollii suit. Results: At group level, analyses showed no significant effect of stimulation at any frequency on NeuroFlexor neural component (NC) and EMG amplitude in the upper or lower extremities (p > 0.35). Nevertheless, the effect was highly variable at the individual level, with eight patients exhibiting reduced NC (>1 N) in the upper extremity after stimulation at 30 Hz, 5 at 20 Hz and 3 in OFF settings. All these patients presented severe spasticity at baseline, i.e., NC > 8 N. Modified Ashworth ratings of spasticity and range of motion did not change significantly after stimulation at any frequency. Finally, 75% of participants reported an overall feeling of well-being during stimulation, with 25% patients describing a muscle-relaxing effect on the affected hand and/or foot at both 20 and 30 Hz. Conclusions: The 60 min of electrical stimulation with EXOPULSE Mollii suit did not reduce spasticity consistently in the upper and lower extremities in the chronic phase after stroke. Findings suggest a need for further studies in patients with severe spasticity after stroke including repeated stimulation sessions. Clinical Trial Registration: https://clinicaltrials.gov/ct2/show/NCT04076878, identifier: NCT04076878.

2.
J Neuroeng Rehabil ; 17(1): 109, 2020 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-32778118

RESUMO

BACKGROUND: Spasticity after lesions of central motor pathways may be disabling and there is a need for new, cost-effective treatment methods. One novel approach is offered by the electro-dress Mollii®, primarily designed to enhance reciprocal inhibition of spastic muscles by multifocal, transcutaneous antagonist stimulation. METHODS: The Mollii® suit was set individually for 20 participants living with spasticity and hemiplegia after stroke and used in the home setting for 6 weeks. Usability and perceived effects were monitored by weekly telephone interviews. Outcome was assessed by use of the NeuroFlexor™ method for quantification of the neural component (NC) of resistance to passive stretch (spasticity), and the modified Ashworth scale (MAS) for total resistance, Fugl-Meyer Assessment of motor recovery for sensorimotor function in upper (FM-UE) and lower extremities (FM-LE), activity performance with the Action Research Arm Test (ARAT), Berg balance scale, 10 m and 6 min walk tests, and perceived functioning with the Stroke Impact Scale. RESULTS: Compliance was high (mean 19.25 of 21 sessions). Perceived positive effects were reported by 60% and most commonly related to decreased muscle tone (n = 9), improved gait pattern function (n = 7) and voluntary movement in the upper extremity (n = 6). On a group level, the NC decreased significantly in the wrist flexors of the affected hand (p = 0.023) and significant improvements according to FM-UE (p = 0.000) and FM-LE (p = 0.003) were seen after the intervention. No significant difference was detected with MAS or assessed activity performance, except for the ARAT (p = 0.000). FM-UE score change correlated significantly and fairly with the perceived effect in the upper extremity (r 0.498 p = 0.025) and in the corresponding analysis for the FM-LE and perceived effect in the lower extremity (r = 0.469 p = 0.037). CONCLUSION: This study indicates that the Mollii® method is feasible when used in the home setting to decrease spasticity and improve sensorimotor function. The results may guide a larger controlled study combined with rehabilitation interventions to enhance effects on activity and participation domains. TRIAL REGISTRATION: NCT04076878 . Registered 2 September 2019 - Retrospectively registered.


Assuntos
Espasticidade Muscular/terapia , Reabilitação do Acidente Vascular Cerebral/instrumentação , Acidente Vascular Cerebral/complicações , Estimulação Elétrica Nervosa Transcutânea/instrumentação , Dispositivos Eletrônicos Vestíveis , Adulto , Idoso , Estudos de Viabilidade , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Espasticidade Muscular/etiologia , Reabilitação do Acidente Vascular Cerebral/métodos , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...