Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 267
Filtrar
1.
Medicina (Kaunas) ; 57(3)2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33652628

RESUMO

Background and Objectives: Brain arteriovenous malformations AVMs have been consistently regarded as congenital malformations of the cerebral vasculature. However, recent case reports describing "de novo AVMs" have sparked a growing debate on the nature of these lesions. Materials and Methods: We have performed a systematic review of the literature concerning de novo AVMs utilizing the PubMed and Google Academic databases. Termes used in the search were "AVM," "arteriovenous," "de novo," and "acquired," in all possible combinations. Results: 53 articles including a total of 58 patients harboring allegedly acquired AVMs were identified by researching the literature. Of these, 32 were male (55.17%), and 25 were female (43.10%). Mean age at de novo AVM diagnosis was 27.833 years (standard deviation (SD) of 21.215 years and a 95% confidence interval (CI) of 22.3 to 33.3). Most de novo AVMs were managed via microsurgical resection (20 out of 58, 34.48%), followed by radiosurgery and conservative treatment for 11 patients (18.97%) each, endovascular embolization combined with resection for five patients (8.62%), and embolization alone for three (5.17%), the remaining eight cases (13.79%) having an unspecified therapy. Conclusions: Increasing evidence suggests that some of the AVMs discovered develop some time after birth. We are still a long way from finally elucidating their true nature, though there is reason to believe that they can also appear after birth. Thus, we reason that the de novo AVMs are the result of a 'second hit' of a variable type, such as a previous intracranial hemorrhage or vascular pathology. The congenital or acquired characteristic of AVMs may have a tremendous impact on prognosis, risk of hemorrhage, and short and long-term management.


Assuntos
Embolização Terapêutica , Malformações Arteriovenosas Intracranianas , Encéfalo , Feminino , Hemorragia , Humanos , Malformações Arteriovenosas Intracranianas/cirurgia , Masculino , Prognóstico , Resultado do Tratamento
2.
Diagnostics (Basel) ; 11(2)2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33669647

RESUMO

The Hippo signaling pathway, one of the most conserved in humans, controlling dimensions of organs and tumor growth, is frequently deregulated in several human malignancies, including ovarian cancer (OC). The alteration of Hippo signaling has been reported to contribute to ovarian carcinogenesis and progression. However, the prognostic roles of individual Hippo genes in OC patients remain elusive. Herein we investigated the expression level and prognostic value of key Hippo genes in OC using online databases, followed by a qRT-PCR validation step in an additional patient cohort. Using the GEPIA database, we observed an increased level for TP53 and reduced expression level for LATS1, LATS2, MST1, TAZ, and TEF in tumor tissue versus normal adjacent tissue. Moreover, LATS1, LATS2, TP53, TAZ, and TEF expression levels have prognostic significance correlated with progression-free survival. The qRT-PCR validation step was conducted in an OC patient cohort comprising 29 tumor tissues and 20 normal adjacent tissues, endorsing the expression level for LATS1, LATS2, and TP53, as well as for two of the miRNAs targeting the TP53 gene, revealing miR-25-3p upregulation and miR-181c-5p downregulation. These results display that there are critical prognostic value dysregulations of the Hippo genes in OC. Our data demonstrate the major role the conserved Hippo pathway presents in tumor control, underlying potential therapeutic strategies and controlling several steps modulated by miRNAs and their target genes that could limit ovarian cancer progression.

3.
Int J Mol Sci ; 22(2)2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33477745

RESUMO

Angiogenesis is a broad spread term of high interest in regenerative medicine and tissue engineering including the dental field. In the last two decades, researchers worldwide struggled to find the best ways to accelerate healing, stimulate soft, and hard tissue remodeling. Stem cells, growth factors, pathways, signals, receptors, genetics are just a few words that describe this area in medicine. Dental implants, bone and soft tissue regeneration using autologous grafts, or xenografts, allografts, their integration and acceptance rely on their material properties. However, the host response, through its vascularization, plays a significant role. The present paper aims to analyze and organize the latest information about the available dental stem cells, the types of growth factors with pro-angiogenic effect and the possible therapeutic effect of enhanced angiogenesis in regenerative dentistry.


Assuntos
Odontologia/tendências , Neovascularização Fisiológica/genética , Regeneração/fisiologia , Medicina Regenerativa/tendências , Autoenxertos/transplante , Humanos , Engenharia Tecidual , Transplante Homólogo/tendências
5.
Biochim Biophys Acta Mol Basis Dis ; 1867(5): 166045, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33513429

RESUMO

Circular RNAs (circRNA) have gained recent interest due to their functional versatility due to their interactions with other RNA species and proteins, all of which underline complex regulatory networks involved in pathogenic mechanisms. As a result, recent insights in circRNA biology are investigating their biomarker and therapeutic potential. One such circRNA is CircFOXO3, which consists of the circularized second exon of the FOXO3 mRNA, a member of the forkhead box transcription factor family involved in the regulation of developmental programs. Recent research focused on the role of circFOXO3 in the context of cancer has highlighted several implications in key tumorigenesis mechanisms, thus consolidating its relevance among other identified circRNAs. In this paper, we will focus on the currently identified case-specific implications of circFOXO3 in cancer, with a focus on the circFOXO3-miRNA-mRNA regulatory networks, its interactions with different proteins, and their cumulated biological effects upon tumor development. Therefore, we aim to provide an integrated perspective of the mechanistic implications of circFOXO3 in different cancers while also highlighting its biomarker or therapeutic potential based on the current evidence.

6.
Int J Mol Sci ; 22(2)2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33451052

RESUMO

Lung cancer is currently the first cause of cancer-related death. The major lung cancer subtype is non-small cell lung cancers (NSCLC), which accounts for approximatively 85% of cases. The major carcinogenic associated with lung cancer is tobacco smoke, which produces long-lasting and progressive damage to the respiratory tract. The progressive and diffuse alterations that occur in the respiratory tract of patients with cancer and premalignant lesions have been described as field cancerization. At the level of tumor cells, adjacent tumor microenvironment (TME) and cancerized field are taking place dynamic interactions through direct cell-to-cell communication or through extracellular vesicles. These molecular messages exchanged between tumor and nontumor cells are represented by proteins, noncoding RNAs (ncRNAs) and microRNAs (miRNAs). In this paper, we analyze the miRNA roles in the macrophage polarization at the level of TME and cancerized field in NSCLC. Identifying molecular players that can influence the phenotypic states at the level of malignant cells, tumor microenvironment and cancerized field can provide us new insights into tumor regulatory mechanisms that can be further modulated to restore the immunogenic capacity of the TME. This approach could revert alterations in the cancerized field and could enhance currently available therapy approaches.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/etiologia , Transformação Celular Neoplásica/genética , Suscetibilidade a Doenças , Neoplasias Pulmonares/etiologia , Ativação de Macrófagos/genética , Macrófagos/metabolismo , MicroRNAs/genética , Animais , Carcinoma Pulmonar de Células não Pequenas/imunologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Transformação Celular Neoplásica/imunologia , Transformação Celular Neoplásica/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/patologia , Ativação de Macrófagos/imunologia , Macrófagos/imunologia , Interferência de RNA , Microambiente Tumoral/imunologia
7.
Molecules ; 26(2)2021 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-33440679

RESUMO

The concern for implementing bioactive nutraceuticals in antioxidant-related therapies is of great importance for skin homeostasis in benign or malignant diseases. In order to elucidate some novel insights of Lycium barbarum (Goji berry) activity on skin cells, the present study focused on its active compound zeaxanthin. By targeting the stemness markers CD44 and CD105, with deep implications in skin oxidative stress mechanisms, we revealed, for the first time, selectivity in zeaxanthin activity. When applied in vitro on BJ human fibroblast cell line versus the A375 malignant melanoma cells, despite the moderate cytotoxicity, the zeaxanthin-rich extracts 1 and 2 were able to downregulate significantly the CD44 and CD105 membrane expression and extracellular secretion in A375, and to upregulate them in BJ cells. At mechanistic level, the present study is the first to demonstrate that the zeaxanthin-rich Goji extracts are able to influence selectively the mitogen-activated protein kinases (MAPK): ERK, JNK and p38 in normal BJ versus tumor-derived A375 skin cells. These results point out towards the applications of zeaxanthin from L. barbarum as a cytoprotective agent in normal skin and raises questions about its use as an antitumor prodrug alone or in combination with standard therapy.

8.
J Exp Clin Cancer Res ; 39(1): 241, 2020 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-33187552

RESUMO

BACKGROUND: Triple negative breast cancer (TNBC) is a heterogeneous disease with aggressive behavior and an unfavorable prognosis rate. Due to the lack of surface receptors, TNBC must be intensely investigated in order to establish a suitable treatment for patients with this pathology. Chemoresistance is an important reason for therapeutic failure in TNBC. METHOD: The aim of this study was to investigate the effect of doxorubicin in TNBC cell lines and to highlight cellular and molecular alterations after a long exposure to doxorubicin. RESULTS: The results revealed that doxorubicin significantly increased the half maximal inhibitory concentration (IC50) values at P12 and P24 compared to parenteral cells P0. Modifications in gene expression were investigated through microarray technique, and for detection of mutational pattern was used Next Generation Sequencing (NGS). 196 upregulated and 115 downregulated genes were observed as effect of multiple dose exposure, and 15 overexpressed genes were found to be involved in drug resistance. Also, the presence of some additional mutations in both cell lines was observed. CONCLUSION: The outcomes of this research may provide novel biomarkers for drug resistance in TNBC. Also, this activity can highlight the potential mechanisms associated with drug resistance, as well as the potential therapies to counteract these mechanisms.

9.
Front Oncol ; 10: 516850, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33194579

RESUMO

Non-small cell lung cancer (NSCLC) remains a problem worldwide due to its rapid progression and low rate of response to treatment. The heterogeneity of these tumors observed in histopathology exam but also in the mutational status and gene expression pattern makes this malignancy difficult to treat in clinic. The present study investigated the effect of miR-21 and let-7 family members as prognostic biomarkers in NSCLC patients based on the results published in different studies regarding this subject until March 2019. The analysis revealed that these two transcripts are steady biomarkers for prediction of patient outcome or survival. Upregulated expression of miR-21 is associated with poor outcome of patients with NSCLC [HR = 1.87, 95% CI = (1.41, 2.47), p < 0.001]. The analysis regarding let-7 family, specifically let-7a/b/e/f, revealed that downregulated expression of these transcripts predicts poor outcome for NSCLC patients [HR = 2.61, 95% CI = (1.58, 4.30), p < 0.001]. Besides, the reliability of these microRNAs is reflected in the fact that their prognostic significance is constant given the different sample types (tissue, FFPE tissue, serum, serum/plasma or exosomes) used in the selected studies.

10.
Biomedicines ; 8(11)2020 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-33198152

RESUMO

Cardiology and oncology are two fields dedicated to the study of various types of oncological and cardiac diseases, but when they collide, a new specialty is born, i.e., cardio-oncology. Continuous research on cancer therapy has brought into the clinic novel therapeutics that have significantly improved patient survival. However, these therapies have also been associated with adverse effects that can impede the proper management of oncological patients through the necessity of drug discontinuation due to life-threatening or long-term morbidity risks. Cardiovascular toxicity from oncological therapies is the main issue that needs to be solved. Proper knowledge, interpretation, and management of new drugs are key elements for developing the best therapeutic strategies for oncological patients. Upon continuous investigations, the profile of cardiotoxicity events has been enlarged with the inclusion of myocarditis upon administration of immune checkpoint inhibitors and cardiac dysfunction in the context of cytokine release syndrome with chimeric antigen receptor T cell therapy. Affinity enhanced and chimeric antigen receptor T cells have both been associated with hypotension, arrhythmia, and left ventricular dysfunction, typically in the setting of cytokine release syndrome. Therefore, the cardiologist must adhere to the progressing field of cancer therapy and become familiar with the adverse effects of novel drugs, and not only the ones of standard care, such as anthracycline, trastuzumab, and radiation therapy. The present review provides essential information summarized from the latest studies from cardiology, oncology, and hematology to bring together the three specialties and offers proper management options for oncological patients.

11.
Medicina (Kaunas) ; 56(11)2020 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-33198232

RESUMO

Background and objective: The aim of the present study was to establish a new differentiation protocol using cannabidiol (CBD) and vitamin D3 (Vit. D3) for a better and faster osteogenic differentiation of dental tissue derived mesenchymal stem cells (MSCs). Materials and methods: MSCs were harvested from dental follicle (DFSCs), dental pulp (DPSCs), and apical papilla (APSCs) of an impacted third molar of a 17-year old patient. The stem cells were isolated and characterized using flow cytometry; reverse transcription polymerase chain reaction (RT-PCR); and osteogenic, chondrogenic, and adipogenic differentiation. The effects of CBD and Vit. D3 on osteogenic differentiation of dental-derived stem cell were evaluated in terms of viability/metabolic activity by alamar test, expression of collagen1A, osteopontin (OP), osteocalcin (OC), and osteonectin genes and by quantification of calcium deposits by alizarin red assay. Results: Stem cell characterization revealed more typical stemness characteristics for DFSCs and DPSCs and atypical morphology and markers expression for APSCs, a phenotype that was confirmed by differences in multipotential ability. The RT-PCR quantification of bone matrix proteins expression revealed a different behavior for each cell type, APSCs having the best response for CBD. DPSCs showed the best osteogenic potential when treated with Vit. D3. Cultivation of DFSC in standard stem cell conditions induced the highest expression of osteogenic genes, suggesting the spontaneous differentiation capacity of these cells. Regarding mineralization, alizarin red assay indicated that DFSCs and APSCs were the most responsive to low doses of CBD and Vit. D3. DPSCs had the lowest mineralization levels, with a slightly better response to Vit. D3. Conclusions: This study provides evidence that DFSCs, DPSCs, and APSCs respond differently to osteoinduction stimuli and that CBD and Vit. D3 can enhance osteogenic differentiation of these types of cells under certain conditions and doses.

12.
J Cell Mol Med ; 2020 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-33211389

RESUMO

COVID-19 can present with a variety of clinical features, ranging from asymptomatic or mild respiratory symptoms to fulminant acute respiratory distress syndrome (ARDS) depending on the host's immune responses and the extent of the associated pathologies. This implies that several measures need to be taken to limit severely impairing symptoms caused by viral-induced pathology in vital organs. Opioids are most exploited for their analgesic effects but their usage in the palliation of dyspnoea, immunomodulation and lysosomotropism may represent potential usages of opioids in COVID-19. Here, we describe the mechanisms involved in each of these potential usages, highlighting the benefits of using opioids in the treatment of ARDS from SARS-CoV-2 infection.

13.
Int J Mol Sci ; 21(19)2020 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-33023042

RESUMO

In spite of being a preventable disease, cervical cancer (CC) remains at high incidence, and it has a significant mortality rate. Although hijacking of the host cellular pathway is fundamental for developing a better understanding of the human papillomavirus (HPV) pathogenesis, a major obstacle is identifying the central molecular targets involved in HPV-driven CC. The aim of this study is to investigate transcriptomic patterns of HPV-infected and normal tissues to identify novel prognostic markers. Analyses of functional enrichment and interaction networks reveal that altered genes are mainly involved in cell cycle, DNA damage, and regulated cell-to-cell signaling. Analysis of The Cancer Genome Atlas (TCGA) data has suggested that patients with unfavorable prognostics are more likely to have DNA repair defects attributed, in most cases, to the presence of HPV. However, further studies are needed to fully unravel the molecular mechanisms of such genes involved in CC.

14.
Childs Nerv Syst ; 2020 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-33070216

RESUMO

BACKGROUND: Cavernous malformations (CMs) are either congenital or acquired vascular lesions comprised of sinusoid spaces filled with either blood or its breakdown products. They possess a relatively reduced risk of hemorrhage, yet placement within the posterior fossa and especially the brainstem heightens their likelihood to rupture, making them a likely cause of permanent and debilitating neurological deficit, as well as a veritable surgical challenge. Although the incidence of rupture varies with age among reported case series, it is undoubtable that the severity of this occurrence is the highest while the brain is as its most vulnerable period, i.e. during infancy. CASE PRESENTATIONS: We present two patients, both female, 6.5- and 5-months-old respectively, who presented with brainstem hemorrhage from CM. They suffered from a sudden onset of hemiparesis and were subjected to surgical removal of their lesions and resulting hematomas. Both patients were discharged in a favorable neurological status and are currently alive and in good health. CONCLUSION: Microsurgical treatment of brainstem CMs in infants is not only possible with minimal deficit, but also advisable if the lesions are symptomatic. Nevertheless, this requires substantial patience and experience to prevent significant loss of blood and injury to the structures of the posterior fossa. We argue that the safest method to prevent further damage from brainstem CM rebleed is to remove these lesions shortly after the initial hemorrhage.

15.
Diagnostics (Basel) ; 10(10)2020 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-33050493

RESUMO

Prostate cancer represents the most encountered urinary malignancy in males over 50 years old, and the second most diagnosed after lung cancer globally. Digital rectal examination and prostatic specific antigen were the long-time standard tools for diagnosis but with a significant risk of overdiagnosis and overtreatment. Magnetic resonance imaging recently entered the diagnosis process, but to this date, there is no specific biomarker that accurately indicates whether to proceed with the prostate biopsy. Research in this area has gone towards this direction, and recently, serum, urine, imagistic, tissue biomarkers, and Risk Calculators promise to help better diagnose and stratify prostate cancer. In order to eliminate the comorbidities that appear along with the diagnosis and treatment of this disease, there is a constant need to implement new diagnostic strategies. Important uro-oncology associations recommend the use of novel biomarkers in the grey area of prostate cancer, to better distinguish the next step in the diagnostic process. Although it is not that simple, they should be integrated according to the clinical policies, and it should be considered that statistical significance does not always equal clinical significance. In this review, we analyzed the contribution of prostate-specific antigen (PSA)-based biomarkers (PHI, PHID, 4Kscore, STHLM3), imagistic techniques (mp-MRI and mp-US), and combined tests in the early diagnosis process of localized prostate cancer.

16.
Cancers (Basel) ; 12(10)2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-33092068

RESUMO

Breast cancer is one of the most common oncological diseases in women, as its incidence is rapidly growing, rendering it unpredictable and causing more harm than ever before on an annual basis. Alterations of coding and noncoding genes are related to tumorigenesis and breast cancer progression. In this study, several key genes associated with epithelial-to-mesenchymal transition (EMT) and cancer stem cell (CSC) features were identified. EMT and CSCs are two key mechanisms responsible for self-renewal, differentiation, and self-protection, thus contributing to drug resistance. Therefore, understanding of the relationship between these processes may identify a therapeutic vulnerability that can be further exploited in clinical practice, and evaluate its correlation with overall survival rate. To determine expression levels of altered coding and noncoding genes, The Cancer Omics Atlas (TCOA) are used, and these data are overlapped with a list of CSCs and EMT-specific genes downloaded from NCBI. As a result, it is observed that CSCs are reciprocally related to EMT, thus identifying common signatures that allow for predicting the overall survival for breast cancer genes (BRCA). In fact, common CSCs and EMT signatures, represented by ALDH1A1, SFRP1, miR-139, miR-21, and miR-200c, are deemed useful as prognostic biomarkers for BRCA. Therefore, by mapping changes in gene expression across CSCs and EMT, suggesting a cross-talk between these two processes, we have been able to identify either the most common or specific genes or miRNA markers associated with overall survival rate. Thus, a better understanding of these mechanisms will lead to more effective treatment options.

17.
Int J Mol Sci ; 21(21)2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-33121202

RESUMO

GLOBOCAN 2018 identified lung cancer as the leading oncological pathology in terms of incidence and mortality rates. Angiogenesis is a key adaptive mechanism of numerous malignancies that promotes metastatic spread in view of the dependency of cancer cells on nutrients and oxygen, favoring invasion. Limitation of the angiogenic process could significantly hamper the disease advancement through starvation of the primary tumor and impairment of metastatic spread. This review explores the basic molecular mechanisms of non-small cell lung cancer (NSCLC) angiogenesis, and discusses the influences of the key proangiogenic factors-the vascular endothelial growth factor-A (VEGF-A), basic fibroblast growth factor (FGF2), several matrix metalloproteinases (MMPs-MMP-2, MMP-7, MMP-9) and hypoxia-and the therapeutic implications of microRNAs (miRNAs, miRs) throughout the entire process, while also providing critical reviews of a number of microRNAs, with a focus on miR-126, miR-182, miR-155, miR-21 and let-7b. Finally, current conventional NSCLC anti-angiogenics-bevacizumab, ramucirumab and nintedanib-are briefly summarized through the lens of evidence-based medicine.

18.
Int J Mol Sci ; 21(20)2020 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-33080788

RESUMO

Communications among cells can be achieved either via direct interactions or via secretion of soluble factors. The emergence of extracellular vesicles (EVs) as entities that play key roles in cell-to-cell communication offer opportunities in exploring their features for use in therapeutics; i.e., management and treatment of various pathologies, such as those used for cancer. The potential use of EVs as therapeutic agents is attributed not only for their cell membrane-bound components, but also for their cargos, mostly bioactive molecules, wherein the former regulate interactions with a recipient cell while the latter trigger cellular functions/molecular mechanisms of a recipient cell. In this article, we highlight the involvement of EVs in hallmarks of a cancer cell, particularly focusing on those molecular processes that are influenced by EV cargos. Moreover, we explored the roles of RNA species and proteins carried by EVs in eliciting drug resistance phenotypes. Interestingly, engineered EVs have been investigated and proposed as therapeutic agents in various in vivo and in vitro studies, as well as in several clinical trials.

20.
Mol Cell Biochem ; 475(1-2): 285-299, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32888160

RESUMO

Triple-negative breast cancer (TNBC), which accounts for 10-20% of all breast cancers, has the worst prognosis. Although chemotherapy treatment is a standard for TNBC, it lacks a specific target. Therefore, new therapeutic strategies are required to be investigated. In this study, a combined doxorubicin (DOX) and small interfering RNA (siRNA) therapy is proposed as therapeutic strategy for targeting TGFß1 gene. Hs578T cell line is used as in vitro model for TNBC, wherein TGFß1siRNA therapy is employed to enhance therapeutic effects. Cell proliferation rate is measured using an MTT test, and morphological alterations are assed using microscopically approached, while gene expression is determined by qRT-PCR analysis. The combined treatment of TGFß1siRNA and DOX reduced levels of cell proliferation and mitochondrial activity and promoted the alteration of cell morphology (dark-field microscopy). DOX treatment caused downregulation of six genes and upregulation of another six genes. The combined effects of DOX and TGFß1siRNA resulted in upregulation of 13 genes and downregulation of four genes. Silencing of TGFß1 resulted in activation of cell death mechanisms in Hs578T cells, to potentiate the effects of DOX, but not in an additive manner, due to the activation of genes involved in resistance to therapy (ABCB1 and IL-6).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...