Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 11(1): 3310, 2020 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-32620765

RESUMO

Halogen bonds are a highly directional class of intermolecular interactions widely employed in chemistry and chemical biology. This linear interaction is commonly viewed to be analogous to the hydrogen bond because hydrogen bonding models also intuitively describe the σ-symmetric component of halogen bonding. The possibility of π-covalency in a halogen bond is not contemplated in any known models. Here we present evidence of π-covalency being operative in halogen bonds formed between chloride and halogenated triphenylamine-based radical cations. We reach this conclusion through computational analysis of chlorine K-edge X-ray absorption spectra recorded on these halogen bonded pairs. In light of this result, we contend that halogen bonding is better described by analogy to metal coordination bonds rather than hydrogen bonds. Our revised description of the halogen bond suggests that these interactions could be employed to influence the electronic properties of conjugated molecules in unique ways.

2.
ChemSusChem ; 13(14): 3622-3626, 2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32369260

RESUMO

The photoelectrochemical decomposition of lignin model compounds at a BiVO4 photoanode is demonstrated with simulated sunlight and an applied bias of 2.0 V. These prototypical lignin model compounds are photoelectrochemically converted into the corresponding aryl aldehyde and phenol derivatives in a single step with conversion of up to ≈64 % over 20 h. Control experiments suggest that vanadium sites are electrocatalytically active, which precludes the need for a redox mediator in solution. This feature of the system is corroborated by a layer of V2 O5 deposited on BiVO4 serving to boost the conversion by 10 %. Our methodology capitalizes on the reactive power of sunlight to drive reactions that have only been studied previously by electrochemical or catalytic methods. The use of a BiVO4 photoanode to drive lignin model decomposition therefore provides a new platform to extract valuable aromatic chemical feedstocks using solar energy, electricity and biomass as the only inputs.

3.
Angew Chem Int Ed Engl ; 59(29): 12192-12198, 2020 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-32330355

RESUMO

Strain engineering can increase the activity and selectivity of an electrocatalyst. Tensile strain is known to improve the electrocatalytic activity of palladium electrodes for reduction of carbon dioxide or dioxygen, but determining how strain affects the hydrogen evolution reaction (HER) is complicated by the fact that palladium absorbs hydrogen concurrently with HER. We report here a custom electrochemical cell, which applies tensile strain to a flexible working electrode, that enabled us to resolve how tensile strain affects hydrogen absorption and HER activity for a thin film palladium electrocatalyst. When the electrodes were subjected to mechanically-applied tensile strain, the amount of hydrogen that absorbed into the palladium decreased, and HER electrocatalytic activity increased. This study showcases how strain can be used to modulate the hydrogen absorption capacity and HER activity of palladium.

4.
Inorg Chem ; 2020 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-32155052

RESUMO

Mesoionic carbenes have found wide use as components of homogeneous catalysts. Recent discoveries have, however, shown that metal complexes of such ligands also have huge potential in photochemical research and in the activation of small molecules. We present here three ReI complexes with mesoionic pyridyl-carbene ligands. The complexes display reduction steps which were investigated via UV-vis-NIR-IR spectro-electrochemistry, and these results point toward an EC mechanism. The ReI compounds emit in the visible range in solution at room temperature with excited state lifetimes that are dependent on the substituents of the mesoionic carbenes. These complexes are also potent electrocatalysts for the selective reduction of CO2 to CO. Whereas the substituents on the carbenes have no influence on the reduction potentials, the electrocatalytic efficiency is strongly dependent on the substituents. This fact is likely a result of catalyst instability. The results presented here thus introduce mesoionic carbenes as new potent ligands for the generation of emissive ReI complexes and for electrocatalytic CO2 reduction.

5.
Chem Sci ; 10(36): 8360-8366, 2019 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-31803414

RESUMO

Tunable and highly conductive hole transport materials are crucial for the performance of organic electronics applications such as organic light emitting diodes and perovskite solar cells. For commercial applications, these materials' requirements include easy synthesis, high hole mobility, and highly tuned and compatible electronic energy levels. Here, we present a systematic study of a recently discovered, easy-to-synthesize class of spiro[fluorene-9,9'-xanthene]-based organic hole transport materials. Systematic side group functionalization allows us to control the HOMO energy and charge carrier mobility. Analysis of the bulk simulations enables us to derive design rules for mobility enhancement. We show that larger functional groups (e.g. methyl) decrease the conformational disorder due to steric effects and thus increase the hole mobility. Highly asymmetric or polar side groups (e.g. fluorine), however, increase the electrostatic disorder and thus reduce the hole mobility. These generally applicable design rules will help in the future to further optimize organic hole transport materials.

6.
Rev Sci Instrum ; 90(7): 074103, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31370432

RESUMO

We present an analytical electrolyzer with sensors embedded within flow plates to enable direct measurement of electrolyte temperatures and pressures in real time during water electrolysis. Flow plates with either parallel or serpentine channels and a total of eight equally spaced sensors were integrated into a flow cell containing a nickel foam gas diffusion layer and an anion exchange membrane. The temperature and pressure of the electrolyte in the channels increase relative to the inlet by as much as 7.3 °C and 11.5 kPa, respectively, during electrolysis at an applied current density of 200 mA cm-2. The measured increases in temperature and pressure differ depending on the flow plate geometry: A greater increase in temperature is observed in parallel flow plates, whereas the serpentine flow plate geometry results in greater variability in pressure. This work represents the first demonstration of an analytical flow cell capable of spatially resolved operando temperature and pressure sensing within the flow channels of a water electrolyzer.

7.
Nat Commun ; 10(1): 3602, 2019 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-31399585

RESUMO

Molecular catalysts that combine high product selectivity and high current density for CO2 electrochemical reduction to CO or other chemical feedstocks are urgently needed. While earth-abundant metal-based molecular electrocatalysts with high selectivity for CO2 to CO conversion are known, they are characterized by current densities that are significantly lower than those obtained with solid-state metal materials. Here, we report that a cobalt phthalocyanine bearing a trimethyl ammonium group appended to the phthalocyanine macrocycle is capable of reducing CO2 to CO in water with high activity over a broad pH range from 4 to 14. In a flow cell configuration operating in basic conditions, CO production occurs with excellent selectivity (ca. 95%), and good stability with a maximum partial current density of 165 mA cm-2 (at -0.92 V vs. RHE), matching the most active noble metal-based nanocatalysts. These results represent state-of-the-art performance for electrolytic carbon dioxide reduction by a molecular catalyst.

8.
Science ; 365(6451): 367-369, 2019 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-31346062

RESUMO

Practical electrochemical carbon dioxide (CO2) conversion requires a catalyst capable of mediating the efficient formation of a single product with high selectivity at high current densities. Solid-state electrocatalysts achieve the CO2 reduction reaction (CO2RR) at current densities ≥ 150 milliamperes per square centimeter (mA/cm2), but maintaining high selectivities at high current densities and efficiencies remains a challenge. Molecular CO2RR catalysts can be designed to achieve high selectivities and low overpotentials but only at current densities irrelevant to commercial operation. We show here that cobalt phthalocyanine, a widely available molecular catalyst, can mediate CO2 to CO formation in a zero-gap membrane flow reactor with selectivities > 95% at 150 mA/cm2 The revelation that molecular catalysts can work efficiently under these operating conditions illuminates a distinct approach for optimizing CO2RR catalysts and electrolyzers.

9.
Nature ; 570(7759): 45-51, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31133686

RESUMO

The 1989 claim of 'cold fusion' was publicly heralded as the future of clean energy generation. However, subsequent failures to reproduce the effect heightened scepticism of this claim in the academic community, and effectively led to the disqualification of the subject from further study. Motivated by the possibility that such judgement might have been premature, we embarked on a multi-institution programme to re-evaluate cold fusion to a high standard of scientific rigour. Here we describe our efforts, which have yet to yield any evidence of such an effect. Nonetheless, a by-product of our investigations has been to provide new insights into highly hydrided metals and low-energy nuclear reactions, and we contend that there remains much interesting science to be done in this underexplored parameter space.

10.
J Am Chem Soc ; 141(19): 7815-7821, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30998338

RESUMO

We report here the benefits of using a palladium membrane reactor to drive hydrogenation chemistry with electricity while bypassing the formation of gaseous H2. This technique uses a palladium membrane to physically separate the electrochemical and hydrogenation chemistry. As a result, hydrogenation can be performed electrochemically with protons but in any organic solvent. In this article, we outline a series of experiments showing how hydrogenation in the palladium membrane reactor proceeds at faster reaction rates and with much higher voltage efficiency than hydrogenation at an electrode. Moreover, the organic reaction chemistry in the membrane reactor can be performed in organic solvents and without contamination by electrolytes. The physical separation of the hydrogenation compartment from the electrolysis compartment therefore broadens the scope of electrolytically-driven reactions that are available, and simplifies reagent handling and purification.

11.
Nat Mater ; 18(5): 454-458, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30858567

RESUMO

Crystal facets, vertices and edges govern the energy landscape of metal surfaces and thus the chemical interactions on the surface1,2. The facile absorption and desorption of hydrogen at a palladium surface provides a useful platform for defining how metal-solute interactions impact properties relevant to energy storage, catalysis and sensing3-5. Recent advances in in operando and in situ techniques have enabled the phase transitions of single palladium nanocrystals to be temporally and spatially tracked during hydrogen absorption6-11. We demonstrate herein that in situ X-ray diffraction can be used to track both hydrogen absorption and desorption in palladium nanocrystals. This ensemble measurement enabled us to delineate distinctive absorption and desorption mechanisms for nanocrystals containing exclusively (111) or (100) facets. We show that the rate of hydrogen absorption is higher for those nanocrystals containing a higher number of vertices, consistent with hydrogen absorption occurring quickly after ß-phase nucleation at lattice-strained vertices9,10. Tracking hydrogen desorption revealed initial desorption rates to be nearly tenfold faster for samples with (100) facets, presumably due to the faster recombination of surface hydrogen atoms. These results inspired us to make nanocrystals with a high number of vertices and (100) facets, which were found to accommodate fast hydrogen uptake and release.

12.
iScience ; 10: 80-86, 2018 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-30508720

RESUMO

Commercially available electrochromic (EC) windows are based on solid-state devices in which WO3 and NiOx films commonly serve as the EC and counter electrode layers, respectively. These metal oxide layers are typically physically deposited under vacuum, a time- and capital-intensive process when using rigid substrates. Herein we report a facile solution deposition method for producing amorphous WO3 and NiOx layers that prove to be effective materials for a solid-state EC device. The full device containing these solution-processed layers demonstrates performance metrics that meet or exceed the benchmark set by devices containing physically deposited layers of the same compositions. The superior EC performance measured for our devices is attributed to the amorphous nature of the NiOx produced by the solution-based photodeposition method, which yields a more effective ion storage counter electrode relative to the crystalline NiOx layers that are more widely used. This versatile method yields a distinctive approach for constructing EC windows.

13.
Inorg Chem ; 57(23): 14624-14631, 2018 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-30422643

RESUMO

We demonstrate herein a CO2 reduction electrocatalyst regeneration strategy based on the manipulation of the Cu(0)/Cu2+ equilibrium with high concentrations of ethylenediaminetetraacetic acid (EDTA). This strategy enables the sustained performance of copper catalysts in distilled and tap water electrolytes for over 12 h. The deposition of common electrolyte impurities such as iron, nickel, and zinc is blocked because EDTA can effectively bind the metal ions and negatively shift the electrode potential of M/M n+. The Cu/Cu2+ redox couple is >600 mV more positive than the other metal ions and therefore participates in an equilibrium of dissolution and redeposition from and to the electrode in high concentrations of EDTA. These dynamic equilibria serve to further regenerate the surface copper catalyst to prevent the deactivation of catalytic sites. On the basis of this strategy, we show that >95% of initial hydrocarbon production activity can be maintained for 12 h in KHCO3 (99% purity) enriched distilled water and 6 h in KHCO3 (99% purity) enriched tap water.

14.
Nat Commun ; 9(1): 4916, 2018 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-30464202

RESUMO

Over 60 years have passed since Taube deduced an orbital-mediated electron transfer mechanism between distinct metal complexes. This concept of an orbital pathway has been thoroughly explored for donor-acceptor pairs bridged by covalently bonded chemical residues, but an analogous pathway has not yet been conclusively demonstrated for formally outer-sphere systems that lack an intervening bridge. In our present study, we experimentally resolve at an atomic level the orbital interactions necessary for electron transfer through an explicit intermolecular bond. This finding was achieved using a homologous series of surface-immobilized ruthenium catalysts that bear different terminal substituents poised for reaction with redox active species in solution. This arrangement enabled the discovery that intermolecular chalcogen⋯iodide interactions can mediate electron transfer only when these interactions bring the donor and acceptor orbitals into direct contact. This result offers the most direct observation to date of an intermolecular orbital pathway for electron transfer.

15.
Angew Chem Int Ed Engl ; 57(47): 15529-15533, 2018 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-30267466

RESUMO

We report design principles of the thermal and redox properties of synthetically accessible spiro-based hole transport materials (HTMs) and show the relevance of these findings to high-performance perovskite solar cells (PSCs). The chemical modification of an asymmetric spiro[fluorene-9,9'-xanthene] core is amenable to selective placement of redox active triphenylamine (TPA) units. We therefore leveraged computational techniques to investigate five HTMs bearing TPA groups judiciously positioned about this asymmetric spiro core. It was determined that TPA groups positioned about the conjugated fluorene moiety increase the free energy change for hole-extraction from the perovskite layer, while TPAs about the xanthene unit govern the Tg values. The synergistic effects of these characteristics resulted in an HTM characterized by both a low reduction potential (≈0.7 V vs. NHE) and a high Tg value (>125 °C) to yield a device power conversion efficiency (PCE) of 20.8 % in a PSC.

16.
Dalton Trans ; 47(34): 11942-11952, 2018 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-30027200

RESUMO

We report a series of structurally analogous cobalt mediators related to [Co-bpy]Z (bpy = 2,2'-bipyrimidine, Z = 2+ or 3+) to demonstrate a linear relationship between the redox potential of the Co(iii/ii)-based redox couple (Emed) and open-circuit voltage (VOC) of the DSSC. The Emed values vary from 0.42 to 1.07 V vs. NHE depending on the number of nitrogen atoms and the presence of tert-butyl substituents on the ligand. A 64-mV gain in photovoltage was calculated for every +100 mV shift in Emed. Differences in the mediator sizes, diffusion coefficients, light absorption profiles, and spin state configurations for the complexes were not significant and therefore not expected to contribute to changes in the VOC. A decrease in the photocurrent, downward shift in quasi-Fermi level (EF,n) and shorter electron lifetime (Tn) with increasingly positive Emed were instead attributed to enhanced electron recombination from the TiO2 film to oxidized mediator species in the electrolyte.

17.
Proc Natl Acad Sci U S A ; 115(28): 7248-7253, 2018 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-29941573

RESUMO

Electron-transfer theories predict that an increase in the quantum-mechanical mixing (HDA) of electron donor and acceptor wavefunctions at the instant of electron transfer drives equilibrium constants toward unity. Kinetic and equilibrium studies of four acceptor-bridge-donor (A-B-D) compounds reported herein provide experimental validation of this prediction. The compounds have two redox-active groups that differ only by the orientation of the aromatic bridge: a phenyl-thiophene bridge (p) that supports strong electronic coupling of HDA > 1,000 cm-1; and a xylyl-thiophene bridge (x) that prevents planarization and decreases HDA < 100 cm-1 without a significant change in distance. Pulsed-light excitation allowed kinetic determination of the equilibrium constant, Keq In agreement with theory, Keq(p) were closer to unity compared to Keq(x). A van't Hoff analysis provided clear evidence of an adiabatic electron-transfer pathway for p-series and a nonadiabatic pathway for x-series. Collectively, the data show that the absolute magnitude of the thermodynamic driving force for electron transfers are decreased when adiabatic pathways are operative, a finding that should be taken into account in the design of hybrid materials for solar energy conversion.

18.
J Am Chem Soc ; 140(23): 7176-7186, 2018 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-29733590

RESUMO

The electrochemical and spectroscopic properties of eight bis(tridentate) cyclometalated RuII compounds covalently linked by a phenyl- or xylyl-thiophene bridge to a pendant triphenylamine (TPA) were characterized in fluid solution and immobilized on metal oxide surfaces. Upon surface immobilization, the TPA+/0 reduction potentials of the phenyl-bridged compounds exhibited large changes, ±100 mV, relative to solution-based values, yet those observed for the xylyl-bridged compounds were relatively unchanged. The highest occupied molecular orbital of the surface-immobilized compounds was associated with either TPA or RuII, enabling the study of the electron transfer in opposite directions. Electron transfer in the mixed-valent states of the compounds was found to proceed by different optical pathways for RuII → TPA+ relative to TPA → RuIII. Mulliken-Hush analysis of intervalence charge transfer bands for the phenyl-bridged compounds revealed that the electronic coupling matrix element, HDA, was ∼950 cm-1 for RuII → TPA+, while HDA for TPA → RuIII appeared to be 2500 cm-1. In contrast, the xylyl-bridged compounds were weakly coupled. A superexchange analysis, where unoccupied bridge orbitals were taken directly into account, led to a very different conclusion: HDA did not depend on the charge-transfer direction or path. The results imply that the electron-transfer direction can alter optical charge transfer pathways without influencing the electronic coupling.

19.
Acc Chem Res ; 51(4): 910-918, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29569896

RESUMO

Electrocatalytic CO2 conversion at near ambient temperatures and pressures offers a potential means of converting waste greenhouse gases into fuels or commodity chemicals (e.g., CO, formic acid, methanol, ethylene, alkanes, and alcohols). This process is particularly compelling when driven by excess renewable electricity because the consequent production of solar fuels would lead to a closing of the carbon cycle. However, such a technology is not currently commercially available. While CO2 electrolysis in H-cells is widely used for screening electrocatalysts, these experiments generally do not effectively report on how CO2 electrocatalysts behave in flow reactors that are more relevant to a scalable CO2 electrolyzer system. Flow reactors also offer more control over reagent delivery, which includes enabling the use of a gaseous CO2 feed to the cathode of the cell. This setup provides a platform for generating much higher current densities ( J) by reducing the mass transport issues inherent to the H-cells. In this Account, we examine some of the systems-level strategies that have been applied in an effort to tailor flow reactor components to improve electrocatalytic reduction. Flow reactors that have been utilized in CO2 electrolysis schemes can be categorized into two primary architectures: Membrane-based flow cells and microfluidic reactors. Each invoke different dynamic mechanisms for the delivery of gaseous CO2 to electrocatalytic sites, and both have been demonstrated to achieve high current densities ( J > 200 mA cm-2) for CO2 reduction. One strategy common to both reactor architectures for improving J is the delivery of CO2 to the cathode in the gas phase rather than dissolved in a liquid electrolyte. This physical facet also presents a number of challenges that go beyond the nature of the electrocatalyst, and we scrutinize how the judicious selection and modification of certain components in microfluidic and/or membrane-based reactors can have a profound effect on electrocatalytic performance. In membrane-based flow cells, for example, the choice of either a cation exchange membrane (CEM), anion exchange membrane (AEM), or a bipolar membrane (BPM) affects the kinetics of ion transport pathways and the range of applicable electrolyte conditions. In microfluidic cells, extensive studies have been performed upon the properties of porous carbon gas diffusion layers, materials that are equally relevant to membrane reactors. A theme that is pervasive throughout our analyses is the challenges associated with precise and controlled water management in gas phase CO2 electrolyzers, and we highlight studies that demonstrate the importance of maintaining adequate flow cell hydration to achieve sustained electrolysis.

20.
ChemSusChem ; 11(1): 48-57, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29205925

RESUMO

Electrochemically reducing CO2 using renewable energy is a contemporary global challenge that will only be met with electrocatalysts capable of efficiently converting CO2 into fuels and chemicals with high selectivity. Although many different metals and morphologies have been tested for CO2 electrocatalysis over the last several decades, relatively limited attention has been committed to the study of alloys for this application. Alloying is a promising method to tailor the geometric and electric environments of active sites. The parameter space for discovering new alloys for CO2 electrocatalysis is particularly large because of the myriad products that can be formed during CO2 reduction. In this Minireview, mixed-metal electrocatalyst compositions that have been evaluated for CO2 reduction are summarized. A distillation of the structure-property relationships gleaned from this survey are intended to help in the construction of guidelines for discovering new classes of alloys for the CO2 reduction reaction.


Assuntos
Dióxido de Carbono/química , Técnicas Eletroquímicas/métodos , Ligas/química , Catálise , Metais/química , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA