Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 203
Filtrar
1.
PLoS Negl Trop Dis ; 15(1): e0008814, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33465071

RESUMO

Infections by schistosomes result in granulomatous lesions around parasite eggs entrapped within the host tissues. The host and parasite determinants of the Schistosoma mansoni egg-induced granulomatous response are areas of active investigation. Some studies in mice implicate Tumor Necrosis Factor (TNF) produced in response to the infection whereas others fail to find a role for it. In addition, in the mouse model, the S. mansoni secreted egg antigen omega-1 is found to induce granulomas but the underlying mechanism remains unknown. We have recently developed the zebrafish larva as a model to study macrophage recruitment and granuloma formation in response to Schistosoma mansoni eggs. Here we use this model to investigate the mechanisms by which TNF and omega-1 shape the early granulomatous response. We find that TNF, specifically signaling through TNF receptor 1, is not required for macrophage recruitment to the egg and granuloma initiation but does mediate granuloma enlargement. In contrast, omega-1 mediates initial macrophage recruitment, with this chemotactic activity being dependent on its RNase activity. Our findings further the understanding of the role of these host- and parasite-derived factors and show that they impact distinct facets of the granulomatous response to the schistosome egg.

2.
Front Immunol ; 11: 593838, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33329584

RESUMO

In spite of growing evidence supporting the occurrence of complex interactions between Schistosoma and gut bacteria in mice and humans, no data is yet available on whether worm-mediated changes in microbiota composition are dependent on the baseline gut microbial profile of the vertebrate host. In addition, the impact of such changes on the susceptibility to, and pathophysiology of, schistosomiasis remains largely unexplored. In this study, mice colonized with gut microbial populations from a human donor (HMA mice), as well as microbiota-wild type (WT) animals, were infected with Schistosoma mansoni, and alterations of their gut microbial profiles at 50 days post-infection were compared to those occurring in uninfected HMA and WT rodents, respectively. Significantly higher worm and egg burdens, together with increased specific antibody responses to parasite antigens, were observed in HMA compared to WT mice. These differences were associated to extensive dissimilarities between the gut microbial profiles of each HMA and WT groups of mice at baseline; in particular, the gut microbiota of HMA animals was characterized by low microbial alpha diversity and expanded Proteobacteria, as well as by the absence of putative immunomodulatory bacteria (e.g. Lactobacillus). Furthermore, differences in infection-associated changes in gut microbiota composition were observed between HMA and WT mice. Altogether, our findings support the hypothesis that susceptibility to S. mansoni infection in mice is partially dependent on the composition of the host baseline microbiota. Moreover, this study highlights the applicability of HMA mouse models to address key biological questions on host-parasite-microbiota relationships in human helminthiases.

3.
Nat Commun ; 11(1): 6411, 2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33339816

RESUMO

Over 250 million people suffer from schistosomiasis, a tropical disease caused by parasitic flatworms known as schistosomes. Humans become infected by free-swimming, water-borne larvae, which penetrate the skin. The earliest intra-mammalian stage, called the schistosomulum, undergoes a series of developmental transitions. These changes are critical for the parasite to adapt to its new environment as it navigates through host tissues to reach its niche, where it will grow to reproductive maturity. Unravelling the mechanisms that drive intra-mammalian development requires knowledge of the spatial organisation and transcriptional dynamics of different cell types that comprise the schistomulum body. To fill these important knowledge gaps, we perform single-cell RNA sequencing on two-day old schistosomula of Schistosoma mansoni. We identify likely gene expression profiles for muscle, nervous system, tegument, oesophageal gland, parenchymal/primordial gut cells, and stem cells. In addition, we validate cell markers for all these clusters by in situ hybridisation in schistosomula and adult parasites. Taken together, this study provides a comprehensive cell-type atlas for the early intra-mammalian stage of this devastating metazoan parasite.


Assuntos
Mamíferos/parasitologia , Parasitos/citologia , Parasitos/crescimento & desenvolvimento , Schistosoma mansoni/citologia , Schistosoma mansoni/crescimento & desenvolvimento , Análise de Célula Única , Animais , Esôfago/metabolismo , Éxons/genética , Regulação da Expressão Gênica , Humanos , Células Musculares/metabolismo , Sistema Nervoso/citologia , Neurônios/citologia , Parasitos/genética , Schistosoma mansoni/genética , Células-Tronco/citologia , Células-Tronco/metabolismo , Transcrição Genética
4.
Commun Biol ; 3(1): 656, 2020 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-33168940

RESUMO

Haemonchus contortus is a globally distributed and economically important gastrointestinal pathogen of small ruminants and has become a key nematode model for studying anthelmintic resistance and other parasite-specific traits among a wider group of parasites including major human pathogens. Here, we report using PacBio long-read and OpGen and 10X Genomics long-molecule methods to generate a highly contiguous 283.4 Mbp chromosome-scale genome assembly including a resolved sex chromosome for the MHco3(ISE).N1 isolate. We show a remarkable pattern of conservation of chromosome content with Caenorhabditis elegans, but almost no conservation of gene order. Short and long-read transcriptome sequencing allowed us to define coordinated transcriptional regulation throughout the parasite's life cycle and refine our understanding of cis- and trans-splicing. Finally, we provide a comprehensive picture of chromosome-wide genetic diversity both within a single isolate and globally. These data provide a high-quality comparison for understanding the evolution and genomics of Caenorhabditis and other nematodes and extend the experimental tractability of this model parasitic nematode in understanding helminth biology, drug discovery and vaccine development, as well as important adaptive traits such as drug resistance.

5.
PLoS Negl Trop Dis ; 14(11): e0008623, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33253172

RESUMO

BACKGROUND: Guinea worm-Dracunculus medinensis-was historically one of the major parasites of humans and has been known since antiquity. Now, Guinea worm is on the brink of eradication, as efforts to interrupt transmission have reduced the annual burden of disease from millions of infections per year in the 1980s to only 54 human cases reported globally in 2019. Despite the enormous success of eradication efforts to date, one complication has arisen. Over the last few years, hundreds of dogs have been found infected with this previously apparently anthroponotic parasite, almost all in Chad. Moreover, the relative numbers of infections in humans and dogs suggests that dogs are currently the principal reservoir on infection and key to maintaining transmission in that country. PRINCIPAL FINDINGS: In an effort to shed light on this peculiar epidemiology of Guinea worm in Chad, we have sequenced and compared the genomes of worms from dog, human and other animal infections. Confirming previous work with other molecular markers, we show that all of these worms are D. medinensis, and that the same population of worms are causing both infections, can confirm the suspected transmission between host species and detect signs of a population bottleneck due to the eradication efforts. The diversity of worms in Chad appears to exclude the possibility that there were no, or very few, worms present in the country during a 10-year absence of reported cases. CONCLUSIONS: This work reinforces the importance of adequate surveillance of both human and dog populations in the Guinea worm eradication campaign and suggests that control programs aiming to interrupt disease transmission should stay aware of the possible emergence of unusual epidemiology as pathogens approach elimination.

6.
PLoS Negl Trop Dis ; 14(11): e0008890, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33253209

RESUMO

Extracellular RNAs (ex-RNAs) are secreted by cells through different means that may involve association with proteins, lipoproteins or extracellular vesicles (EV). In the context of parasitism, ex-RNAs represent new and exciting communication intermediaries with promising potential as novel biomarkers. In the last years, it was shown that helminth parasites secrete ex-RNAs, however, most work mainly focused on RNA secretion mediated by EV. Ex-RNA study is of special interest in those helminth infections that still lack biomarkers for early and/or follow-up diagnosis, such as echinococcosis, a neglected zoonotic disease caused by cestodes of the genus Echinococcus. In this work, we have characterised the ex-RNA profile secreted by in vitro grown metacestodes of Echinococcus multilocularis, the casuative agent of alveolar echinococcosis. We have used high throughput RNA-sequencing together with RT-qPCR to characterise the ex-RNA profile secreted towards the extra- and intra-parasite milieus in EV-enriched and EV-depleted fractions. We show that a polarized secretion of small RNAs takes place, with microRNAs mainly secreted to the extra-parasite milieu and rRNA- and tRNA-derived sequences mostly secreted to the intra-parasite milieu. In addition, we show by nanoparticle tracking analyses that viable metacestodes secrete EV mainly into the metacestode inner vesicular fluid (MVF); however, the number of nanoparticles in culture medium and MVF increases > 10-fold when metacestodes show signs of tegument impairment. Interestingly, we confirm the presence of host miRNAs in the intra-parasite milieu, implying their internalization and transport through the tegument towards the MVF. Finally, our assessment of the detection of Echinococcus miRNAs in patient samples by RT-qPCR yielded negative results suggesting the tested miRNAs may not be good biomarkers for this disease. A comprehensive study of the secretion mechanisms throughout the life cycle of these parasites will help to understand parasite interaction with the host and also, improve current diagnostic tools.

7.
Cell Host Microbe ; 2020 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-33120115

RESUMO

Schistosome eggs provoke the formation of granulomas, organized immune aggregates, around them. For the host, the granulomatous response can be both protective and pathological. Granulomas are also postulated to facilitate egg extrusion through the gut lumen, a necessary step for parasite transmission. We used zebrafish larvae to visualize the granulomatous response to Schistosomamansoni eggs and inert egg-sized beads. Mature eggs rapidly recruit macrophages, which form granulomas within days. Beads also induce granulomas rapidly, through a foreign body response. Strikingly, immature eggs do not recruit macrophages, revealing that the eggshell is immunologically inert. Our findings suggest that the eggshell inhibits foreign body granuloma formation long enough for the miracidium to mature. Then parasite antigens secreted through the eggshell trigger granulomas that facilitate egg extrusion into the environment. In support of this model, we find that only mature S. mansoni eggs are shed into the feces of mice and humans.

8.
Sci Rep ; 10(1): 16667, 2020 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-33028892

RESUMO

Plasmodium vivax gene regulation remains difficult to study due to the lack of a robust in vitro culture method, low parasite densities in peripheral circulation and asynchronous parasite development. We adapted an RNA-seq protocol "DAFT-seq" to sequence the transcriptome of four P. vivax field isolates that were cultured for a short period ex vivo before using a density gradient for schizont enrichment. Transcription was detected from 78% of the PvP01 reference genome, despite being schizont-enriched samples. This extensive data was used to define thousands of 5' and 3' untranslated regions, some of which overlapped with neighbouring transcripts, and to improve the gene models of 352 genes, including identifying 20 novel gene transcripts. This dataset has also significantly increased the known amount of heterogeneity between P. vivax schizont transcriptomes from individual patients. The majority of genes found to be differentially expressed between the isolates lack Plasmodium falciparum homologs and are predicted to be involved in host-parasite interactions, with an enrichment in reticulocyte binding proteins, merozoite surface proteins and exported proteins with unknown function. An improved understanding of the diversity within P. vivax transcriptomes will be essential for the prioritisation of novel vaccine targets.

9.
Science ; 369(6511): 1649-1653, 2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32973031

RESUMO

Schistosome parasites kill 250,000 people every year. Treatment of schistosomiasis relies on the drug praziquantel. Unfortunately, a scarcity of molecular tools has hindered the discovery of new drug targets. Here, we describe a large-scale RNA interference (RNAi) screen in adult Schistosoma mansoni that examined the function of 2216 genes. We identified 261 genes with phenotypes affecting neuromuscular function, tissue integrity, stem cell maintenance, and parasite survival. Leveraging these data, we prioritized compounds with activity against the parasites and uncovered a pair of protein kinases (TAO and STK25) that cooperate to maintain muscle-specific messenger RNA transcription. Loss of either of these kinases results in paralysis and worm death in a mammalian host. These studies may help expedite therapeutic development and invigorate studies of these neglected parasites.

10.
Proc Natl Acad Sci U S A ; 117(40): 25159-25168, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32958676

RESUMO

The tropical Andes are an important natural laboratory to understand speciation in many taxa. Here we examined the evolutionary history of parasites of the Leishmania braziliensis species complex based on whole-genome sequencing of 67 isolates from 47 localities in Peru. We first show the origin of Andean Leishmania as a clade of near-clonal lineages that diverged from admixed Amazonian ancestors, accompanied by a significant reduction in genome diversity and large structural variations implicated in host-parasite interactions. Within the Andean species, patterns of population structure were strongly associated with biogeographical origin. Molecular clock and ecological niche modeling suggested that the history of diversification of the Andean lineages is limited to the Late Pleistocene and intimately associated with habitat contractions driven by climate change. These results suggest that changes in forestation over the past 150,000 y have influenced speciation and diversity of these Neotropical parasites. Second, genome-scale analyses provided evidence of meiotic-like recombination between Andean and Amazonian Leishmania species, resulting in full-genome hybrids. The mitochondrial genome of these hybrids consisted of homogeneous uniparental maxicircles, but minicircles originated from both parental species. We further show that mitochondrial minicircles-but not maxicircles-show a similar evolutionary pattern to the nuclear genome, suggesting that compatibility between nuclear-encoded mitochondrial genes and minicircle-encoded guide RNA genes is essential to maintain efficient respiration. By comparing full nuclear and mitochondrial genome ancestries, our data expand our appreciation on the genetic consequences of diversification and hybridization in parasitic protozoa.


Assuntos
Genoma Mitocondrial/genética , Interações Hospedeiro-Parasita/genética , Leishmania braziliensis/genética , Leishmaniose Cutânea/genética , Ecossistema , Florestas , Especiação Genética , Humanos , Leishmania braziliensis/patogenicidade , Leishmaniose Cutânea/epidemiologia , Leishmaniose Cutânea/parasitologia , Peru/epidemiologia , Filogeografia
11.
Sci Rep ; 10(1): 15043, 2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-32929126

RESUMO

Here, we report a pilot study paving the way for further single cell genomics studies in Leishmania. First, the performances of two commercially available kits for Whole Genome Amplification (WGA), PicoPLEX and RepliG were compared on small amounts of Leishmania donovani DNA, testing their ability to preserve specific genetic variations, including aneuploidy levels and SNPs. We show here that the choice of WGA method should be determined by the planned downstream genetic analysis, PicoPLEX and RepliG performing better for aneuploidy and SNP calling, respectively. This comparison allowed us to evaluate and optimize corresponding bio-informatic methods. As PicoPLEX was shown to be the preferred method for studying single cell aneuploidy, this method was applied in a second step, on single cells of L. braziliensis, which were sorted by fluorescence activated cell sorting (FACS). Even sequencing depth was achieved in 28 single cells, allowing accurate somy estimation. A dominant karyotype with three aneuploid chromosomes was observed in 25 cells, while two different minor karyotypes were observed in the other cells. Our method thus allowed the detection of aneuploidy mosaicism, and provides a solid basis which can be further refined to concur with higher-throughput single cell genomic methods.

12.
PLoS Pathog ; 16(8): e1008717, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32745123

RESUMO

Hepatocystis is a genus of single-celled parasites infecting, amongst other hosts, monkeys, bats and squirrels. Although thought to have descended from malaria parasites (Plasmodium spp.), Hepatocystis spp. are thought not to undergo replication in the blood-the part of the Plasmodium life cycle which causes the symptoms of malaria. Furthermore, Hepatocystis is transmitted by biting midges, not mosquitoes. Comparative genomics of Hepatocystis and Plasmodium species therefore presents an opportunity to better understand some of the most important aspects of malaria parasite biology. We were able to generate a draft genome for Hepatocystis sp. using DNA sequencing reads from the blood of a naturally infected red colobus monkey. We provide robust phylogenetic support for Hepatocystis sp. as a sister group to Plasmodium parasites infecting rodents. We show transcriptomic support for a lack of replication in the blood and genomic support for a complete loss of a family of genes involved in red blood cell invasion. Our analyses highlight the rapid evolution of genes involved in parasite vector stages, revealing genes that may be critical for interactions between malaria parasites and mosquitoes.


Assuntos
Apicomplexa/genética , Sangue/parasitologia , Colobus/parasitologia , Malária/veterinária , Doenças dos Macacos/parasitologia , Plasmodium/genética , Infecções Protozoárias em Animais/parasitologia , Animais , Apicomplexa/classificação , Apicomplexa/fisiologia , Genoma de Protozoário , Malária/sangue , Malária/parasitologia , Doenças dos Macacos/sangue , Filogenia , Plasmodium/classificação , Plasmodium/fisiologia , Infecções Protozoárias em Animais/sangue , Transcriptoma
13.
Wellcome Open Res ; 5: 178, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32789192

RESUMO

Background. At least 250 million people worldwide suffer from schistosomiasis, caused by Schistosoma worms. Genome sequences for several Schistosoma species are available, including a high-quality annotated reference for Schistosoma mansoni. There is a pressing need to develop a reliable functional toolkit to translate these data into new biological insights and targets for intervention. CRISPR-Cas9 was recently demonstrated for the first time in S. mansoni, to produce somatic mutations in the omega-1 ( ω1) gene. Methods. We employed CRISPR-Cas9 to introduce somatic mutations in a second gene, SULT-OR, a sulfotransferase expressed in the parasitic stages of S. mansoni, in which mutations confer resistance to the drug oxamniquine. A 262-bp PCR product spanning the region targeted by the gRNA against SULT-OR was amplified, and mutations identified in it by high-throughput sequencing. Results. We found that 0.3-2.0% of aligned reads from CRISPR-Cas9-treated adult worms showed deletions spanning the predicted Cas9 cut site, compared to 0.1-0.2% for sporocysts, while deletions were extremely rare in eggs. The most common deletion observed in adults and sporocysts was a 34 bp-deletion directly upstream of the predicted cut site, but rarer deletions reaching as far as 102 bp upstream of the cut site were also detected. The CRISPR-Cas9-induced deletions, if homozygous, are predicted to cause resistance to oxamniquine by producing frameshifts, ablating SULT-OR transcription, or leading to mRNA degradation via the nonsense-mediated mRNA decay pathway. However, no SULT-OR knock down at the mRNA level was observed, presumably because the cells in which CRISPR-Cas9 did induce mutations represented a small fraction of all cells expressing SULT-OR. Conclusions. Further optimisation of CRISPR-Cas protocols for different developmental stages and particular cell types, including germline cells, will contribute to the generation of a homozygous knock-out in any gene of interest, and in particular the SULT-OR gene to derive an oxamniquine-resistant stable transgenic line.

15.
Int J Parasitol ; 50(9): 707-718, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32659277

RESUMO

The caecum, an intestinal appendage in the junction of the small and large intestines, displays a unique epithelium that serves as an exclusive niche for a range of pathogens including whipworms (Trichuris spp.). While protocols to grow organoids from small intestine (enteroids) and colon (colonoids) exist, the conditions to culture organoids from the caecum have yet to be described. Here, we report methods to grow, differentiate and characterise mouse adult stem cell-derived caecal organoids, termed caecaloids. We compare the cellular composition of caecaloids with that of enteroids, identifying differences in intestinal epithelial cell populations that mimic those found in the caecum and small intestine. The remarkable similarity in the intestinal epithelial cell composition and spatial conformation of caecaloids and their tissue of origin enables their use as an in vitro model to study host interactions with important caecal pathogens. Thus, exploiting this system, we investigated the responses of caecal intestinal epithelial cells to extracellular vesicles secreted/excreted by the intracellular helminth Trichuris muris. Our findings reveal novel immunoregulatory effects of whipworm extracellular vesicles on the caecal epithelium, including the downregulation of responses to nucleic acid recognition and type-I interferon signalling.

16.
J Infect Dis ; 2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32524140

RESUMO

Schistosomiasis is a major global health problem caused by blood-dwelling parasitic worms, which is currently tackled primarily by mass administration of the drug praziquantel. Appropriate drug treatment strategies are informed by diagnostics that establish the prevalence and intensity of infection, which, in regions of low transmission, should be highly sensitive. To identify sensitive new serological markers of Schistosoma mansoni infections, we have compiled a recombinant protein library of parasite cell-surface and secreted proteins expressed in mammalian cells. Together with a time series of sera samples from volunteers experimentally infected with a defined number of male parasites, we probed this protein library to identify several markers that can detect primary infections with as low as ten parasites and as early as five weeks post infection. These new markers could be further explored as valuable tools to detect ongoing and previous S. mansoni infections, including in endemic regions where transmission is low.

17.
BMC Genomics ; 21(1): 395, 2020 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-32513207

RESUMO

BACKGROUND: Plasmodium parasites undergo several major developmental transitions during their complex lifecycle, which are enabled by precisely ordered gene expression programs. Transcriptomes from the 48-h blood stages of the major human malaria parasite Plasmodium falciparum have been described using cDNA microarrays and RNA-seq, but these assays have not always performed well within non-coding regions, where the AT-content is often 90-95%. RESULTS: We developed a directional, amplification-free RNA-seq protocol (DAFT-seq) to reduce bias against AT-rich cDNA, which we have applied to three strains of P. falciparum (3D7, HB3 and IT). While strain-specific differences were detected, overall there is strong conservation between the transcriptional profiles. For the 3D7 reference strain, transcription was detected from 89% of the genome, with over 78% of the genome transcribed into mRNAs. We also find that transcription from bidirectional promoters frequently results in non-coding, antisense transcripts. These datasets allowed us to refine the 5' and 3' untranslated regions (UTRs), which can be variable, long (> 1000 nt), and often overlap those of adjacent transcripts. CONCLUSIONS: The approaches applied in this study allow a refined description of the transcriptional landscape of P. falciparum and demonstrate that very little of the densely packed P. falciparum genome is inactive or redundant. By capturing the 5' and 3' ends of mRNAs, we reveal both constant and dynamic use of transcriptional start sites across the intraerythrocytic developmental cycle that will be useful in guiding the definition of regulatory regions for use in future experimental gene expression studies.

18.
Microbiol Resour Announc ; 9(24)2020 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-32527783

RESUMO

Lymphatic filariasis affects ∼120 million people and can result in elephantiasis and hydrocele. Here, we report the nearly complete genome sequence of the best-studied causative agent of lymphatic filariasis, Brugia malayi The assembly contains four autosomes, an X chromosome, and only eight gaps but lacks a contiguous sequence for the known Y chromosome.

19.
PLoS Negl Trop Dis ; 14(5): e0007743, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32374726

RESUMO

Schistosomes are parasitic blood flukes that survive for many years within the mammalian host vasculature. How the parasites establish a chronic infection in the hostile bloodstream environment, whilst evading the host immune response is poorly understood. The parasite develops morphologically and grows as it migrates to its preferred vascular niche, avoiding or repairing damage from the host immune system. In this study, we investigated temporal changes in gene expression during the intra-mammalian development of Schistosoma mansoni. RNA-seq data were analysed from parasites developing in the lung through to egg-laying mature adult worms, providing a comprehensive picture of in vivo intra-mammalian development. Remarkably, genes involved in signalling pathways, developmental control, and adaptation to oxidative stress were up-regulated in the lung stage. The data also suggested a potential role in immune evasion for a previously uncharacterised gene. This study not only provides a large and comprehensive data resource for the research community, but also reveals new directions for further characterising host-parasite interactions that could ultimately lead to new control strategies for this neglected tropical disease pathogen.


Assuntos
Proteínas de Helminto/genética , Schistosoma mansoni/crescimento & desenvolvimento , Schistosoma mansoni/genética , Esquistossomose mansoni/parasitologia , Animais , Feminino , Proteínas de Helminto/metabolismo , Humanos , Masculino , Camundongos , Schistosoma mansoni/metabolismo , Esquistossomose mansoni/patologia , Transcriptoma
20.
Nat Commun ; 11(1): 1964, 2020 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-32327641

RESUMO

Sex determination mechanisms often differ even between related species yet the evolution of sex chromosomes remains poorly understood in all but a few model organisms. Some nematodes such as Caenorhabditis elegans have an XO sex determination system while others, such as the filarial parasite Brugia malayi, have an XY mechanism. We present a complete B. malayi genome assembly and define Nigon elements shared with C. elegans, which we then map to the genomes of other filarial species and more distantly related nematodes. We find a remarkable plasticity in sex chromosome evolution with several distinct cases of neo-X and neo-Y formation, X-added regions, and conversion of autosomes to sex chromosomes from which we propose a model of chromosome evolution across different nematode clades. The phylum Nematoda offers a new and innovative system for gaining a deeper understanding of sex chromosome evolution.


Assuntos
Evolução Molecular , Nematoides/genética , Infecções por Nematoides/parasitologia , Cromossomos Sexuais/genética , Animais , Brugia Malayi/genética , Caenorhabditis elegans/genética , Mapeamento Cromossômico , Feminino , Regulação da Expressão Gênica , Genoma Helmíntico/genética , Humanos , Masculino , Nematoides/classificação , Sequências Repetitivas de Ácido Nucleico/genética , Processos de Determinação Sexual/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA