Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 10(47): 40831-40837, 2018 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-30384598

RESUMO

The utilization of alkali salts, such as NaCl and KI, has enabled the successful growth of large single domain and fully coalesced polycrystalline two-dimensional (2D) transition-metal dichalcogenide layers. However, the impact of alkali salts on photonic and electronic properties is not fully established. In this work, we report alkali-free epitaxy of MoS2 on sapphire and benchmark the properties against alkali-assisted growth of MoS2. This study demonstrates that although NaCl can dramatically increase the domain size of monolayer MoS2 by 20 times, it can also induce strong optical and electronic heterogeneities in as-grown, large-scale films. This work elucidates that utilization of NaCl can lead to variation in growth rates, loss of epitaxy, and high density of nanoscale MoS2 particles (4 ± 0.7/µm2). Such phenomena suggest that alkali atoms play an important role in Mo and S adatom mobility and strongly influence the 2D/sapphire interface during growth. Compared to alkali-free synthesis under the same growth conditions, MoS2 growth assisted by NaCl results in >1% tensile strain in as-grown domains, which reduces photoluminescence by ∼20× and degrades transistor performance.

2.
ACS Nano ; 12(2): 965-975, 2018 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-29360349

RESUMO

Atomically thin transition metal dichalcogenides (TMDs) are of interest for next-generation electronics and optoelectronics. Here, we demonstrate device-ready synthetic tungsten diselenide (WSe2) via metal-organic chemical vapor deposition and provide key insights into the phenomena that control the properties of large-area, epitaxial TMDs. When epitaxy is achieved, the sapphire surface reconstructs, leading to strong 2D/3D (i.e., TMD/substrate) interactions that impact carrier transport. Furthermore, we demonstrate that substrate step edges are a major source of carrier doping and scattering. Even with 2D/3D coupling, transistors utilizing transfer-free epitaxial WSe2/sapphire exhibit ambipolar behavior with excellent on/off ratios (∼107), high current density (1-10 µA·µm-1), and good field-effect transistor mobility (∼30 cm2·V-1·s-1) at room temperature. This work establishes that realization of electronic-grade epitaxial TMDs must consider the impact of the TMD precursors, substrate, and the 2D/3D interface as leading factors in electronic performance.

3.
Sci Rep ; 7(1): 16938, 2017 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-29209000

RESUMO

Evaluating and tuning the properties of two-dimensional (2D) materials is a major focus of advancing 2D science and technology. While many claim that the photonic properties of a 2D layer provide evidence that the material is "high quality", this may not be true for electronic performance. In this work, we deconvolute the photonic and electronic response of synthetic monolayer molybdenum disulfide. We demonstrate that enhanced photoluminescence can be robustly engineered via the proper choice of substrate, where growth of MoS2 on r-plane sapphire can yield >100x enhancement in PL and carrier lifetime due to increased molybdenum-oxygen bonding compared to that of traditionally grown MoS2 on c-plane sapphire. These dramatic enhancements in optical properties are similar to those of super-acid treated MoS2, and suggest that the electronic properties of the MoS2 are also superior. However, a direct comparison of the charge transport properties indicates that the enhanced PL due to increased Mo-O bonding leads to p-type compensation doping, and is accompanied by a 2x degradation in transport properties compared to MoS2 grown on c-plane sapphire. This work provides a foundation for understanding the link between photonic and electronic performance of 2D semiconducting layers, and demonstrates that they are not always correlated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA