Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Biomater ; 2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36155096

RESUMO

The architectural and physiomechanical properties of regenerative scaffolds have been shown to improve engineered tissue function at both a cellular and tissue level. The fabrication of regenerative three-dimensional scaffolds that precisely replicate the complex hierarchical structure of native tissue, however, remains a challenge. The aim of this work is therefore two-fold: i) demonstrate an innovative multidirectional freeze-casting system to afford precise architectural control of ice-templated collagen scaffolds; and ii) present a predictive simulation as an experimental design tool for bespoke scaffold architecture. We used embedded heat sources within the freeze-casting mold to manipulate the local thermal environment during solidification of ice-templated collagen scaffolds. The resultant scaffolds comprised complex and spatially varied lamellar orientations that correlated with the imposed thermal environment and could be readily controlled by varying the geometry and power of the heat sources. The complex macro-architecture did not interrupt the hierarchical features characteristic of ice-templated scaffolds, but pore orientation had a significant impact on the stiffness of resultant structures under compression. Furthermore, our finite element model (FEM) accurately predicted the thermal environment and illustrated the freezing front topography within the mold during solidification. The lamellar orientation of freeze-cast scaffolds was also predicted using thermal gradient vector direction immediately prior to phase change. In combination our FEM and bespoke freeze-casting system present an exciting opportunity for tailored architectural design of ice-templated regenerative scaffolds that mimic the complex hierarchical environment of the native extracellular matrix. STATEMENT OF SIGNIFICANCE: Biomimetic scaffold structure improves engineered tissue function, but the fabrication of three-dimensional scaffolds that precisely replicate the complex hierarchical structure of native tissue remains a challenge. Here, we leverage the robust relationship between thermal gradients and lamellar orientation of ice-templated collagen scaffolds to develop a multidirectional freeze-casting system with precise control of the thermal environment and consequently the complex lamellar structure of resultant scaffolds. Demonstrating the diversity of our approach, we identify heat source geometry and power as control parameters for complex lamellar orientations. We simultaneously present a finite element model (FEM) that describes the three-dimensional thermal environment during solidification and accurately predicts lamellar structure of resultant scaffolds. The model serves as a design tool for bespoke regenerative scaffolds.

2.
Bioact Mater ; 8: 210-219, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34541397

RESUMO

X-ray micro-computed tomography (µ-CT) can be used to provide both qualitative and quantitative information on the structure of three-dimensional (3D) bioactive scaffolds. When performed in a dry state, µ-CT accurately reflects the structure of collagen-based scaffolds, but imaging in a wet state offers challenges with radiolucency. Here we have used phosphotungstic acid (PTA) as a contrast agent to visualise fully hydrated collagen scaffolds in a physiologically relevant environment. A systematic investigation was performed to understand the effects of PTA on the results of µ-CT imaging by varying sample processing variables such as crosslinking density, hydration medium and staining duration. Immersing samples in 0.3% PTA solution overnight completely stained the samples and the treatment provided a successful route for µ-CT analysis of crosslinked samples. However, significant structural artefacts were observed for samples which were either non-crosslinked or had low levels of crosslinking, which had a heterogeneous interior architecture with collapsed pores at the scaffold periphery. This work highlights the importance of optimising the choice of processing and staining conditions to ensure accurate visualisation for hydrated 3D collagen scaffolds in an aqueous medium.

3.
J Mech Behav Biomed Mater ; 123: 104767, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34455140

RESUMO

Particulate reinforcement of polymeric matrices is a powerful technique for tailoring the mechanical and degradation properties of bioresorbable implant materials. Dispersion of inorganic particles is critical to achieving optimal properties, however established techniques such as twin-screw extrusion or solvent casting can have significant drawbacks including excessive thermal degradation or particle agglomeration. We present a facile method for production of polymer-inorganic composites that reduces the time at elevated temperature and the time available for particle agglomeration. Glass slurry was added to a dissolved PLLA solution, and ethanol was added to precipitate polymer onto the glass particles. Characterisation of parts formed by subsequent micro-injection moulding of composite precipitate revealed a significant reduction in agglomeration, with d0.9 reduced from 170 to 43 µm. This drastically improved the ductility (ɛB) from 7% to 120%, without loss of strength or stiffness. The method is versatile and applicable to a wide range of polymer and filler materials.


Assuntos
Poliésteres , Polímeros , Vidro , Resistência à Tração
4.
Acta Biomater ; 135: 150-163, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34454082

RESUMO

Recreating the cell niche of virtually all tissues requires composite materials fabricated from multiple extracellular matrix (ECM) macromolecules. Due to their wide tissue distribution, physical attributes and purity, collagen, and more recently, tropoelastin, represent two appealing ECM components for biomaterials development. Here we blend tropoelastin and collagen, harnessing the cell-modulatory properties of each biomolecule. Tropoelastin was stably co-blended into collagen biomaterials and was retained after EDC-crosslinking. We found that human dermal fibroblasts (HDF), rat glial cells (Rugli) and HT1080 fibrosarcoma cells ligate to tropoelastin via EDTA-sensitive and EDTA-insensitive receptors or do not ligate with tropoelastin, respectively. These differing elastin-binding properties allowed us to probe the cellular response to the tropoelastin-collagen composites assigning specific bioactivity to the collagen and tropoelastin component of the composite material. Tropoelastin addition to collagen increased total Rugli cell adhesion, spreading and proliferation. This persisted with EDC-crosslinking of the tropoelastin-collagen composite. Tropoelastin addition did not affect total HDF and HT1080 cell adhesion; however, it increased the contribution of cation-independent adhesion, without affecting the cell morphology or, for HT1080 cells, proliferation. Instead, EDC-crosslinking dictated the HDF and HT1080 cellular response. These data show that a tropoelastin component dominates the response of cells that possess non-integrin based tropoelastin receptors. EDC modification of the collagen component directs cell function when non-integrin tropoelastin receptors are not crucial for cell activity. Using this approach, we have assigned the biological contribution of each component of tropoelastin-collagen composites, allowing informed biomaterial design for directed cell function via more physiologically relevant mechanisms. STATEMENT OF SIGNIFICANCE: Biomaterials fabricated from multiple extracellular matrix (ECM) macromolecules are required to fully recreate the native tissue niche where each ECM macromolecule engages with a specific repertoire of cell-surface receptors. Here we investigate combining tropoelastin with collagen as they interact with cells via different receptors. We identified specific cell lines, which associate with tropoelastin via distinct classes of cell-surface receptor. These showed that tropoelastin, when combined with collagen, altered the cell behaviour in a receptor-usage dependent manner. Integrin-mediated tropoelastin interactions influenced cell proliferation and non-integrin receptors influenced cell spreading and proliferation. These data shed light on the interplay between biomaterial macromolecular composition, cell surface receptors and cell behaviour, advancing bespoke materials design and providing functionality to specific cell populations.


Assuntos
Materiais Biocompatíveis , Tropoelastina , Animais , Adesão Celular , Colágeno , Elastina , Ratos
5.
J Microsc ; 284(2): 142-156, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34296436

RESUMO

Micro-CT is often used to assess the characteristics of porous structures such as tissue engineering scaffolds and trabecular bone. Prior to analysis, micro-CT images can be thresholded and filtered to remove noise. Scaffold pore size affects mechanical properties and biological cell behaviour and is a frequently assessed parameter. This paper identifies and characterizes an artefact affecting a commonly used filter which erroneously increases mean pore size. The 3D sweep despeckling filter removes all but the largest object within a volume of interest, and therefore deletes any disconnected objects located at the periphery, increasing measured mean pore size. This artefact is characterized, and effective methods to mitigate its effects are devised, involving despeckling a sufficiently large volume of interest, then reducing the volume of interest in size to remove the error prior to analysis. Techniques to effectively apply this method to other data sets are described. This method eliminates the artefact but is time-consuming and computationally expensive. Alternative, more economical filters which remove objects below a specified size are also assessed but are shown to be affected by the same artefact. These results will help to guide the implementation of future studies investigating the effects of pore size.


Micro-CT is an imaging technique commonly used to assess the characteristics of porous structures, such as medical tissue engineering scaffolds and bone. Prior to analysis micro-CT images are often processed by thresholding and filtering to improve the image quality. Scaffold pore size affects biological cell behaviour and mechanical properties, and is a frequently assessed parameter when evaluating medical scaffolds. This paper identifies and characterises an artefact affecting a commonly used filter which erroneously increases measured peripheral mean pore size. The artefact affects the periphery of volumes of interest which have been filtered by a technique called 3D sweep despeckling. This filter removes all but the largest object in the volume of interest, and therefore also deletes small disconnected objects located at the volume of interest periphery. This paper characterises the artefact, and effective methods to mitigate its effects are devised, involving despeckling a sufficiently large volume of interest, then reducing the volume of interest in size to remove the error prior to analysis. Techniques to ascertain the parameters required to effectively apply this artefact reduction method to other datasets are described. This method eliminates the artefact, but is time consuming and computationally expensive. Alternative, more economical despeckling filters are assessed for their ability to remove the error. Of these, a filter which deletes objects below a prescribed area was found to be most effective when performing 2D pore analysis on scaffolds, and the same filter applied to objects below a set volume was best when 3D pore analysis was used. This filter was found to be afflicted by the same artefact as sweep despeckling. These results will help guide the implementation of future studies investigating the effects of pore size.


Assuntos
Engenharia Tecidual , Tecidos Suporte , Colágeno/análise , Colágeno/química , Porosidade , Microtomografia por Raio-X
6.
Nanomaterials (Basel) ; 11(5)2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33925197

RESUMO

Biocompatible neural guidance conduits are alternatives to less abundant autologous tissue grafts for small nerve gap injuries. To address larger peripheral nerve injuries, it is necessary to design cell selective biomaterials that attract neuronal and/or glial cells to an injury site while preventing the intrusion of fibroblasts that cause inhibitory scarring. Here, we investigate a potential method for obtaining this selective cellular response by analysing the responses of rat Schwann cells and human dermal fibroblasts to isoleucine-lysine-valine-alanine-valine (IKVAV)-capped dendrimer-activated collagen films. A high quantity of nanoscale IKVAV-capped dendrimers incorporated onto pre-crosslinked collagen films promoted rat Schwann cell attachment and proliferation, and inhibited human dermal fibroblast proliferation. In addition, while pre-crosslinked dendrimer-activated films inhibited fibroblast proliferation, non-crosslinked dendrimer-activated films and films that were crosslinked after dendrimer-activation (post-crosslinked films) did not. The different cellular responses to pre-crosslinked and post-crosslinked films highlight the importance of having fully exposed, non-covalently bound biochemical motifs (pre-crosslinked films) directing certain cellular responses. These results also suggest that high concentrations of nanoscale IKVAV motifs can inhibit fibroblast attachment to biological substrates, such as collagen, which inherently attract fibroblasts. Therefore, this work points toward the potential of IKVAV-capped dendrimer-activated collagen biomaterials in limiting neuropathy caused by fibrotic scarring at peripheral nerve injury sites.

7.
Biomaterials ; 269: 120612, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33385684

RESUMO

In this study, we investigated the role of cardiomyocyte (CM) and endothelial cell (EC) specific interactions with collagen in the assembly of an operational myocardium in vitro. Engineered cardiac patches represent valuable tools for myocardial repair following infarction and are generally constituted of a suitable biomaterial populated by CMs and supportive cell types. Among those, ECs are required for tissue vascularization and positively modulate CM function. To direct the function of human embryonic stem cell (hESC)-derived CM and EC seeded on biomaterials, we replicated cell-collagen interactions, which regulate cellular behaviour in the native myocardium, using triple-helical peptides (THPs) that are ligands for collagen-binding proteins. THPs enhanced proliferation and activity of CMs and ECs separately and in co-culture, drove CM maturation and enabled coordinated cellular contraction on collagen films. These results highlight the importance of collagen interactions on cellular response and establish THP-functionalized biomaterials as novel tools to produce engineered cardiac tissues.


Assuntos
Células-Tronco Embrionárias Humanas , Engenharia Tecidual , Diferenciação Celular , Células Endoteliais , Humanos , Miócitos Cardíacos , Peptídeos
8.
Front Cardiovasc Med ; 7: 554597, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33195451

RESUMO

Cardiovascular diseases (CVD) constitute a major fraction of the current major global diseases and lead to about 30% of the deaths, i.e., 17.9 million deaths per year. CVD include coronary artery disease (CAD), myocardial infarction (MI), arrhythmias, heart failure, heart valve diseases, congenital heart disease, and cardiomyopathy. Cardiac Tissue Engineering (CTE) aims to address these conditions, the overall goal being the efficient regeneration of diseased cardiac tissue using an ideal combination of biomaterials and cells. Various cells have thus far been utilized in pre-clinical studies for CTE. These include adult stem cell populations (mesenchymal stem cells) and pluripotent stem cells (including autologous human induced pluripotent stem cells or allogenic human embryonic stem cells) with the latter undergoing differentiation to form functional cardiac cells. The ideal biomaterial for cardiac tissue engineering needs to have suitable material properties with the ability to support efficient attachment, growth, and differentiation of the cardiac cells, leading to the formation of functional cardiac tissue. In this review, we have focused on the use of biomaterials of natural origin for CTE. Natural biomaterials are generally known to be highly biocompatible and in addition are sustainable in nature. We have focused on those that have been widely explored in CTE and describe the original work and the current state of art. These include fibrinogen (in the context of Engineered Heart Tissue, EHT), collagen, alginate, silk, and Polyhydroxyalkanoates (PHAs). Amongst these, fibrinogen, collagen, alginate, and silk are isolated from natural sources whereas PHAs are produced via bacterial fermentation. Overall, these biomaterials have proven to be highly promising, displaying robust biocompatibility and, when combined with cells, an ability to enhance post-MI cardiac function in pre-clinical models. As such, CTE has great potential for future clinical solutions and hence can lead to a considerable reduction in mortality rates due to CVD.

9.
Regen Biomater ; 7(5): 471-482, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33149936

RESUMO

Porous biomaterials which provide a structural and biological support for cells have immense potential in tissue engineering and cell-based therapies for tissue repair. Collagen biomaterials that can host endothelial cells represent promising tools for the vascularization of engineered tissues. Three-dimensional collagen scaffolds possessing controlled architecture and mechanical stiffness are obtained through freeze-drying of collagen suspensions, followed by chemical cross-linking which maintains their stability. However, cross-linking scaffolds renders their biological activity suboptimal for many cell types, including human umbilical vein endothelial cells (HUVECs), by inhibiting cell-collagen interactions. Here, we have improved crucial HUVEC interactions with such cross-linked collagen biomaterials by covalently coupling combinations of triple-helical peptides (THPs). These are ligands for collagen-binding cell-surface receptors (integrins or discoidin domain receptors) or secreted proteins (SPARC and von Willebrand factor). THPs enhanced HUVEC adhesion, spreading and proliferation on 2D collagen films. THPs grafted to 3D-cross-linked collagen scaffolds promoted cell survival over seven days. This study demonstrates that THP-functionalized collagen scaffolds are promising candidates for hosting endothelial cells with potential for the production of vascularized engineered tissues in regenerative medicine applications.

10.
Biomaterials ; 254: 120109, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32480093

RESUMO

Due to its ubiquity and versatility in the human body, collagen is an ideal base material for tissue-engineering constructs. Chemical crosslinking treatments allow precise control of the biochemical and mechanical properties through macromolecular modifications to the structure of collagen. In this work, three key facets regarding the collagen crosslinking process are explored. Firstly, a comparison is drawn between the carbodiimide-succinimide (EDC-NHS) system and two emerging crosslinkers utilising alternate chemistries: genipin and tissue transglutaminase (TG2). By characterising the chemical changes upon treatment, the effect of EDC-NHS, genipin and TG2 crosslinking mechanisms on the chemical structure of collagen, and thus the mechanical properties conferred to the substrate is explored. Secondly, the relative importance of mechanical and biochemical cues on cellular phenomena are investigated, including cell viability, integrin-specific attachment, spreading and proliferation. Here, we observe that for human dermal fibroblasts, long-term, stable proliferation is preconditioned by the availability of suitable binding sites, irrespective of the substrate modulus post-crosslinking. Finally, as seen in the graphical abstract we show that by choosing the appropriate crosslinker chemistries, a materials selection map can be drawn for collagen films, encompassing both a range of tensile modulus and fibroblast proliferation which can be modified independently. Thus, in addition to a range of parameters that can be modified in collagen constructs, we demonstrate a route to obtaining tunable bioactivity and mechanics in collagen constructs is uncovered, that is exclusively driven by the crosslinking process.


Assuntos
Corpo Humano , Engenharia Tecidual , Colágeno , Reagentes de Ligações Cruzadas , Humanos , Iridoides , Succinimidas
11.
ACS Appl Bio Mater ; 3(4): 2140-2149, 2020 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-32337501

RESUMO

It has become increasingly evident that the mechanical and electrical environment of a cell is crucial in determining its function and the subsequent behavior of multicellular systems. Platforms through which cells can directly interface with mechanical and electrical stimuli are therefore of great interest. Piezoelectric materials are attractive in this context because of their ability to interconvert mechanical and electrical energy, and piezoelectric nanomaterials, in particular, are ideal candidates for tools within mechanobiology, given their ability to both detect and apply small forces on a length scale that is compatible with cellular dimensions. The choice of piezoelectric material is crucial to ensure compatibility with cells under investigation, both in terms of stiffness and biocompatibility. Here, we show that poly-l-lactic acid nanotubes, grown using a melt-press template wetting technique, can provide a "soft" piezoelectric interface onto which human dermal fibroblasts readily attach. Interestingly, by controlling the crystallinity of the nanotubes, the level of attachment can be regulated. In this work, we provide detailed nanoscale characterization of these nanotubes to show how differences in stiffness, surface potential, and piezoelectric activity of these nanotubes result in differences in cellular behavior.

12.
J R Soc Interface ; 17(165): 20190833, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32316883

RESUMO

Micro-computed X-ray tomography (MicroCT) is one of the most powerful techniques available for the three-dimensional characterization of complex multi-phase or porous microarchitectures. The imaging and analysis of porous networks are of particular interest in tissue engineering due to the ability to predict various large-scale cellular phenomena through the micro-scale characterization of the structure. However, optimizing the parameters for MicroCT data capture and analyses requires a careful balance of feature resolution and computational constraints while ensuring that a structurally representative section is imaged and analysed. In this work, artificial datasets were used to evaluate the validity of current analytical methods by considering the effect of noise and pixel size arising from the data capture, and intrinsic structural anisotropy and heterogeneity. A novel 'segmented percolation method' was developed to exclude the effect of anomalous, non-representative features within the datasets, allowing for scale-invariant structural parameters to be obtained consistently and without manual intervention for the first time. Finally, an in-depth assessment of the imaging and analytical procedures are presented by considering percolation events such as micro-particle filtration and cell sieving within the context of tissue engineering. Along with the novel guidelines established for general pixel size selection for MicroCT, we also report our determination of 3 µm as the definitive pixel size for use in analysing connectivity for tissue engineering applications.


Assuntos
Imageamento Tridimensional , Engenharia Tecidual , Porosidade , Microtomografia por Raio-X
14.
Interface Focus ; 10(2): 20190079, 2020 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-32194932

RESUMO

The endometrium is the secretory lining of the uterus that undergoes dynamic changes throughout the menstrual cycle in preparation for implantation and a pregnancy. Recently, endometrial organoids (EO) were established to study the glandular epithelium. We have built upon this advance and developed a multi-cellular model containing both endometrial stromal and epithelial cells. We use porous collagen scaffolds produced with controlled lyophilization to direct cellular organization, integrating organoids with primary isolates of stromal cells. The internal pore structure of the scaffold was optimized for stromal cell culture in a systematic study, finding an optimal average pore size of 101 µm. EO seeded organize to form a luminal-like epithelial layer, on the surface of the scaffold. The cells polarize with their apical surface carrying microvilli and cilia that face the pore cavities and their basal surface attaching to the scaffold with the formation of extracellular matrix proteins. Both cell types are hormone responsive on the scaffold, with hormone stimulation resulting in epithelial differentiation and stromal decidualization.

15.
Acta Biomater ; 100: 280-291, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31586463

RESUMO

Collagen constructs are widely used for tissue engineering. These are frequently chemically crosslinked, using EDC, to improve their stability and tailor their physical properties. Although generally biocompatible, chemical crosslinking can modify crucial amino acid side chains, such as glutamic acid, that are involved in integrin-mediated cell adhesion. Instead UV crosslinking modifies aromatic side chains. Here we elucidate the impact that EDC, in combination with UV, exerts on the activity of integrin-binding motifs. By employing a model cell line that exclusively utilises integrin α2ß1, we found that whilst EDC crosslinking modulated cell binding, from cation-dependent to cation-independent, UV-mediated crosslinking preserved native-like cell binding, proliferation and surface colonisation. Similar results were observed using a purified recombinant I-domain from integrin α1. Conversely, binding of the I-domain from integrin α2 was sensitive to UV, particularly at low EDC concentrations. Therefore, from this in vitro study, it appears that UV can be used to augment EDC whist retaining a specific subset of integrin-binding motifs in the native collagen molecule. These findings, delineating the EDC- and UV-susceptibility of cell-binding motifs, permit controlled cell adhesion to collagen-based materials through specific integrin ligation in vitro. However, in vivo, further consideration of the potential response to UV wavelength and dose is required in the light of literature reports that UV initiated collagen scission may lead to an adverse inflammatory response. STATEMENT OF SIGNIFICANCE: Recently, there has been rapid growth in the use of extracellular matrix-derived molecules, and in particular collagen, to fabricate biomaterials that replicate the cellular micro-environment. Often chemical or physical crosslinkers are required to enhance the biophysical properties of these materials. Despite extensive use of these crosslinkers, the cell-biological consequences have not been ascertained. To address this, we have investigated the integrin-binding properties of collagen after chemically crosslinking with EDC and physically crosslinking with UV-irradiation. We have established that whilst EDC crosslinking abates all of the integrin binding sites in collagen, UV selectively inhibits interaction with integrin-α2 but not -α1. By providing a mechanistic model for this behaviour, we have, for the first time, defined a series of crosslinking parameters to systematically control the interaction of collagen-based materials with defined cellular receptors.


Assuntos
Materiais Biocompatíveis/metabolismo , Carbodi-Imidas/química , Colágeno/metabolismo , Reagentes de Ligações Cruzadas/química , Integrina alfa2beta1/metabolismo , Raios Ultravioleta , Animais , Bovinos , Adesão Celular , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Humanos , Integrina alfa2beta1/química , Adesividade Plaquetária , Ligação Proteica , Domínios Proteicos
16.
Regen Biomater ; 6(5): 279-287, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31616565

RESUMO

Tissue engineering response may be tailored via controlled, sustained release of active agents from protein-loaded degradable microparticles incorporated directly within three-dimensional (3D) ice-templated collagen scaffolds. However, the effects of covalent crosslinking during scaffold preparation on the availability and release of protein from the incorporated microparticles have not been explored. Here, we load 3D ice-templated collagen scaffolds with controlled additions of poly-(DL-lactide-co-glycolide) microparticles. We probe the effects of subsequent N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride crosslinking on protein release, using microparticles with different internal protein distributions. Fluorescein isothiocyanate labelled bovine serum albumin is used as a model protein drug. The scaffolds display a homogeneous microparticle distribution, and a reduction in pore size and percolation diameter with increased microparticle addition, although these values did not fall below those reported as necessary for cell invasion. The protein distribution within the microparticles, near the surface or more deeply located within the microparticles, was important in determining the release profile and effect of crosslinking, as the surface was affected by the carbodiimide crosslinking reaction applied to the scaffold. Crosslinking of microparticles with a high proportion of protein at the surface caused both a reduction and delay in protein release. Protein located within the bulk of the microparticles, was protected from the crosslinking reaction and no delay in the overall release profile was seen.

17.
Nanoscale ; 11(32): 15120-15130, 2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31369017

RESUMO

The piezoelectricity of collagen is purported to be linked to many biological processes including bone formation and wound healing. Although the piezoelectricity of tissue-derived collagen has been documented across the length scales, little work has been undertaken to characterise the local electromechanical properties of processed collagen, which is used as a base for tissue-engineering implants. In this work, three chemically distinct treatments used to form structurally and mechanically stable scaffolds-EDC-NHS, genipin and tissue transglutaminase-are investigated for their effect on collagen piezolectricity. Crosslinking with EDC-NHS is noted to produce a distinct self-assembly of the fibres into bundles roughly 300 nm in width regardless of the collagen origin. These fibre bundles also show a localised piezoelectric response, with enhanced vertical piezoelectricity of collagen. Such topographical features are not observed with the other two chemical treatments, although the shear piezoelectric response is significantly enhanced upon crosslinking. These observations are reconciled by a proposed effect of the crosslinking mechanisms on the molecular and nanostructure of collagen. These results highlight the ability to modify the electromechanical properties of collagen using chemical crosslinking methods.


Assuntos
Colágeno/química , Reagentes de Ligações Cruzadas/química , Módulo de Elasticidade , Proteínas de Ligação ao GTP/química , Proteínas de Ligação ao GTP/metabolismo , Iridoides/química , Iridoides/metabolismo , Microscopia de Força Atômica , Nanoestruturas/química , Succinimidas/química , Engenharia Tecidual , Transglutaminases/química , Transglutaminases/metabolismo
18.
Biofabrication ; 11(4): 045017, 2019 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-31315102

RESUMO

This work reports an important new development in the production of collagen membranes, based on pulsed electrophoretic deposition (P-EPD), suitable for a wide range of biomedical applications. Collagen membranes are of great interest as a biomaterial and in a range of other industries, though current production techniques suffer from limitations with scaling up, homogeneity, and complex shapes. P-EPD can be used to rapidly create detachable, large-area, homogeneous products with controlled thickness in a wide variety of shapes. We provide a new understanding of the influence of a range of parameters (pulse width, voltage, duty cycle, solvent additions) and their effects on membrane structure. Characterisation by AFM, SEM, and cryoSEM revealed the ability to produce dense, structurally defect-free membranes, and significantly, we show and discuss the ability to produce thicker membranes by sequential deposition without seeing a corresponding increase in cell electrical resistance. We anticipate this novel, rapid, and controllable method for the production of collagen membranes to be of interest for a wide range of fields.


Assuntos
Colágeno/química , Eletroforese/métodos , Membranas Artificiais , Animais , Bovinos , Hidrogéis/química , Imageamento Tridimensional , Solventes , Eletricidade Estática
19.
PLoS One ; 14(1): e0210390, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30620757

RESUMO

One of the greatest obstacles to clinical translation of bone tissue engineering is the inability to effectively and efficiently vascularize scaffolds. The goal of this work was to explore systematically whether architecture, at a scale of hundreds of microns, can be used to direct the growth of microcapillary-like structures into the core of scaffolds. Biphasic bioceramic patterned architectures were produced using silicone molds of 3D printed parts. Grooves and ridges were designed to have widths of 330 µm and 660 µm, with periodicities respectively of 1240 µm and 630 µm. Groove depth was varied between 150 µm and 585 µm. Co-cultures of human dermal microvascular endothelial cells (HDMECs) and human osteoblasts (hOBs) were used to grow microcapillary-like structures on substrates. Bioceramic architecture was found to significantly affect microcapillary-like structure location and orientation. Microcapillary-like structures were found to form predominantly in grooves or between convexities. For all patterned samples, the CD31 (endothelial cell marker) signal was at least 2.5 times higher along grooves versus perpendicular to grooves. In addition, the average signal was at least two times higher within grooves than outside grooves for all samples. Grooves with a width of 330 µm and a depth of 300 µm resulted in the formation of individual, highly aligned microcapillary-like structures with lengths around 5 mm. Extensive literature has focused on the role of nano- and micro-topography (on the scale below tens of microns) on cellular response. However, the idea that architecture at a scale much larger than a cell could be used to modulate angiogenesis has not been systematically investigated. This work shows the crucial influence of architecture on microcapillary-like structure self-assembly at the scale of hundreds of microns. Elucidating the precise correspondence between architecture and microcapillary-like structure organization will ultimately allow the engineering of microvasculature by tuning local scaffold design to achieve desirable microvessel properties.


Assuntos
Capilares/crescimento & desenvolvimento , Engenharia Tecidual/métodos , Tecidos Suporte , Capilares/citologia , Capilares/metabolismo , Cerâmica , Técnicas de Cocultura , Desenho Assistido por Computador , Durapatita , Células Endoteliais/citologia , Humanos , Microscopia Confocal , Microscopia Eletrônica de Varredura , Microtecnologia/métodos , Neovascularização Fisiológica , Osteoblastos/citologia , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Pós , Silicones , Tecidos Suporte/química
20.
Acta Biomater ; 86: 158-170, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30586647

RESUMO

Collagen is used extensively in tissue engineering due to its biocompatibility, near-universal tissue distribution, low cost and purity. However, native tissues are composites that include diverse extracellular matrix components, which influence strongly their mechanical and biological properties. Here, we provide important new findings on the differential regulation, by collagen and elastin, of the bio-response to the composite material. Soluble and insoluble elastin had differing effects on the stiffness and failure strength of the composite films. We established that Rugli cells bind elastin via EDTA-sensitive receptors, whilst HT1080 cells do not. These cells allowed us to probe the contribution of collagen alone (HT1080) and collagen plus elastin (Rugli) to the cellular response. In the presence of elastin, Rugli cell attachment, spreading and proliferation increased, presumably through elastin-binding receptors. By comparison, the attachment and spreading of HT1080 cells was modified by elastin inclusion, but without affecting their proliferation, indicating indirect modulation by elastin of the response of cells to collagen. These new insights highlight that access to elastin dominates the cellular response when elastin-binding receptors are present. In the absence of these receptors, modification of the collagen component and/or physical properties dictate the cellular response. Therefore, we can attribute the contribution of each constituent on the ultimate bioactivity of heterogeneous collagen-composite materials, permitting informed, systematic biomaterials design. STATEMENT OF SIGNIFICANCE: In recent years there has been a desire to replicate the complex extracellular matrix composition of tissues more closely, necessitating the need for composite protein-based materials. In this case both the physical and biochemical properties are altered with the addition of each component, with potential consequences on the cell. To date, the different contributions of each component have not been deconvolved, and instead the cell response to the scaffold as a whole has been observed. Instead, here, we have used specific cell lines, that are sensitive to specific components of an elastin-collagen composite, to resolve the bio-activity of each protein. This has shown that elastin-induced alteration of the collagen component can modulate early stage cell behaviour. By comparison the elastin component directly alters the cell response over the short and long term, but only where appropriate receptors are present on the cell. Due to the widespread use of collagen and elastin, we feel that this data permits, for the first time, the ability to systematically design collagen-composite materials to promote desired cell behaviour with associated advantages for biomaterials fabrication.


Assuntos
Materiais Biocompatíveis/farmacologia , Colágeno/farmacologia , Elastina/farmacologia , Animais , Bovinos , Adesão Celular/efeitos dos fármacos , Contagem de Células , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Colágeno/ultraestrutura , Elastina/ultraestrutura , Humanos , Solubilidade , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...