Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Mais filtros

Base de dados
Intervalo de ano de publicação
Opt Express ; 23(19): 24634-47, 2015 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-26406665


Light spectrometers are highly versatile state-of-the-art measurement devices. However, using these systems, e.g., in semiconductor device characterization, creates challenging obstacles with respect to measurement time. We present a new, flexible and accurate approach to either characterize optical properties of arbitrary photosensitive devices or examine the spectral components of light reliably. Using a spatial light modulator (SLM) in combination with frequency division multiplexing methods, it is possible to significantly improve signal-to-noise ratios and decrease measurement times. Moreover, the use of SLM ensures a greater reliability of the setup because conventional moving parts are replaced. The feasibility and experimental setup are described in detail. The setup has been validated for various applications by comparative measurements.

Opt Express ; 23(19): A1270-9, 2015 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-26406756


In photovoltaics (PV), sun simulators are used to reproduce outdoor conditions in a lab environment such as irradiance level, light uniformity and spectral distribution. Concentrator (C)PV applications additionally require the sun simulators to provide rays with an angular distribution similar to that of the sun rays. However, different factors in CPV sun simulator setups make it difficult to achieve the perfect sun like angular distribution. This is mainly caused by the unavailability of appropriate light sources. Therefore, we investigated in this work, to which deviations such a non-ideal light source can lead and which impact is expected at the measurement of a CPV module. For this, two ray tracing models are presented - one for the simulation of natural sunrays, another one for the simulation of sun simulator conditions. The models are validated based on measurements and subsequently used to simulate the impact on a typical CPV module with silicone-on-glass Fresnel lenses. Here, significant deviations to outdoor conditions are found.

Appl Opt ; 52(13): 2974-84, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23669763


The application of a kaleidoscope as a flux homogenizer to a concentrating photovoltaics system with a central receiver is investigated. The optical setup of a primary dish-type concentrator, a secondary homogenizer optics, and a photovoltaic receiver is simulated using ray tracing. The influence of various deviations from the ideal-namely sunshape (circumsolar radiation), shading, tracking error, and shape of the primary optical concentrator-on the performance of the homogenizer is analyzed quantitatively using the optical efficiency and the normalized standard deviation as a measure of inhomogeneity. Flux distributions for different progressively increasing deviations are discussed qualitatively. Experimental validation of the simulation is presented. It is demonstrated that the performance of the homogenizer is not particularly sensitive to sunshape. If sufficient length is provided, the homogenizer effectively compensates for tracking error, misalignment, and shape deviations of the primary concentrator. Yet despite the presence of the homogenizer, shading due to the holder of the receiver significantly affects the flux distribution at the receiver.