RESUMO
UV irradiation of yellow CH2Cl2 solutions of trans-Fe(CO)3(P((CH2)10)3P) (2a) and PMe3 (10 equiv) gives, in addition to the previously reported dibridgehead diphosphine P((CH2)10)3P (46%), a green paramagnetic complex that crystallography shows to be the trigonal-bipyramidal iron(I) radical trans-[Fe(CO)2(Cl)(P((CH2)10)3P)]⢠(1aâ¢; 31% after workup). This is a rare example of an isolable species of the formula [Fe(CO)4-n(L)n(X)]⢠(n = 0-3, L = two-electron-donor ligand; X = one-electron-donor ligand). Analogous precursors with longer P(CH2)nP segments (n = 12, 14, 16, 18) give only the demetalated diphosphines, and a rationale is proposed. The magnetic susceptibility of 1aâ¢, assayed by Evans' method and SQUID measurements, indicates a spin (S) of 1/2. Cyclic voltammetry shows that 1a⢠undergoes a partially reversible one-electron oxidation, but no facile reduction. The UV-visible, EPR, and 57Fe Mössbauer spectra are analyzed in detail. Complex 2a is similarly studied, and, despite the extra valence electron, exhibits a comparable oxidation potential (ΔE1/2 ≤ 0.04 V). The crystal structure shows a cage conformation, solvation level, disorder motif, and unit cell parameters essentially identical to those of 1aâ¢. DFT calculations provide much insight regarding the structural, redox, and spectroscopic properties.
RESUMO
Palladium-catalyzed regiocontrolled intramolecular oxypalladation-initiated cascades of multifunctional internal alkyne bearing an N-tosyl tether deliver functionalized benzazepine as an exclusive product via 6-endo-dig pathway in 1,4-dioxane solvent and tetrahydroquinoline scaffold as a major product via the 5-exo-dig pathway in the DMSO solvent. The role of the solvent in controlling the regioselectivity is still unknown which can be a major hurdle for further reaction development. Moreover, the reaction in DMSO suffered from having a mixture of products, and no exclusive formation of tetrahydroquinoline was achieved. Herein, we report a concerted computational and experimental study, revealing the role of the solvent in controlling the reaction outcome. DFT study revealed that the formation of the σ-vinylpalladium intermediate is reversible for the 5-exo-dig pathway while it is irreversible for the 6-endo-dig mechanism in 1,4-dioxane and consequently, the 5-exo-dig pathway is difficult to proceed. In contrast, both the 5-exo-dig and 6-endo-dig pathways are irreversible in DMSO. We predicted an exclusive formation of isobenzofuranone-fused chromane via the 5-exo-dig pathway when the N-tosyl tether is replaced by the O-tether in the internal alkyne in DMSO. The experimental study confirms the theoretical hypothesis and provides a highly chemo-divergent approach for the synthesis of biologically significant chromane with a large substrate scope and up to 95% yield at room temperature.
RESUMO
Herein, we have reported a new series of NNS-donor ligands coordinated Ni(II) complexes and utilized them as catalytic activator to synthesize N-alkylated aminesand 1,2-disubstituted benzimidazoles. The separate reaction of [C9H6N-NH-C(O)-CH2-S-Ar] [Ar = C6H5 (L1); C6H4Cl-4 (L2);C6H4Me-4 (L3) and C6H4-OMe-4 (L4)] with Ni(OAc)2 in methanol at 80°C for 3 hours resulted in octahedral nickel complexes [(L1-H)2Ni] (C1), [(L2-H)2Ni] (C2), [(L3-H)2Ni] (C3), and [(L4-H)2Ni] (C4), respectively. All compounds have been characterized by micro and spectroscopic analysis. The molecular structure of complexes C1-C3 has also been determined by single crystal X-ray diffraction data. The utility of complexes C1-C4 were evaluated for the N-alkylation of aniline with benzyl alcohols, and for 1,2-disubstituted benzimidazoles synthesis. The obtained results indicate that complex C1 showed better catalytic activity in both N-alkylation of amines with benzyl alcohols [catalyst loading: 2.0 mol%; Yield up to 92%], and for 1,2-disubstituted benzimidazoles derivatives [catalyst loading: 2.0 mol%; Yield up to 94%)]. The mechanistic studies suggested that the reaction works through hydrogen borrowing from benzyl alcohol and its subsequent utilization for in situ reduction of imine. The experimentally observed catalytic reactivity patterns of complexes C1-C4 have found in good agreement with the HOMO-LUMO energy gaps obtained by DFT analysis of corresponding complexes.
RESUMO
An air-stable, inexpensive, and isolable cobalt(II) complex (C1) of N-((1-methyl-1H-imidazol-2-yl)methyl)-2-(phenylselanyl)ethan amine (L1) was synthesized and characterized. The complex was used to catalyze a one-pot cascade reaction between 2-(2-aminophenyl)ethanols and benzyl alcohol derivatives. Interestingly, 2-aryl-3-formylindole derivatives were formed instead of N-alkylated or C-3 alkylated indoles. A broad substrate scope can be activated using this protocol with only 5.0â mol % catalyst loading to achieve up to 87 % yield of 2-aryl-3-formylindole derivatives. The mechanistic studies suggested that the reaction proceeds through tandem imine formation followed by cyclization.
RESUMO
Defined arrays of transition metal ions embedded in tailored polydentate ligand scaffolds allow for a systematic design of their physical properties. Such molecular strings of closed-shell transition metal centers are particularly interesting for Group 11 metal ions in the oxidation state +1 if they undergo metallophilic d10···d10 contact interactions since these clusters are oftentimes efficient photoluminescence (PL) emitters. Copper is particularly attractive as a sustainable earth-abundant coinage metal source and because of the ability of several CuI complexes to serve as powerful thermally activated delayed fluorescence (TADF) emitters in molecular/organic light-emitting devices (OLEDs). Our combined synthetic, crystallographic, photophysical, and computational study describes a straight tetracuprous array possessing a centrally disconnected CuI2···CuI2 chain and a continuous helically bent CuI4 complex. This molecular helix undergoes a facile rearrangement in diethyl ether solution, yielding an unprecedented nanosized CuI10 cluster (2.9 × 2.0 nm) upon crystallization. All three clusters show either bright blue phosphorescence, TADF, or green/yellow multiband phosphorescence with quantum yields between 6.5 and 67%, which is persistent under hydrostatic pressure up to 30 kbar. Temperature-dependent PL investigations in combination with time-dependent density-functional theory (TD-DFT) calculations and void space analyses of the crystal packings complement a comprehensive correlation between the molecular structures and photoluminescence properties.
RESUMO
Rh complexes of a tridentate PPP ligand bearing 1,2-pyrrolediyl linkers have been prepared, including examples with the central P donor being either a phosphine or a phosphide. Three bimetallic Rh complexes containing the diamandoid Rh2P2 core (P = phosphido) have been structurally and spectroscopically characterized. The Rh-Rh interaction in these three dimers was examined by way of structural comparisons and DFT investigations.
RESUMO
Reactions of the title complexes and n-BuLi (1.5 equiv, -45 °C) afford functional equivalents of the deprotonated species trans-(C6F5)(p-tol3P)2Pt(C≡C)nLi (n = 2-4), as assayed by subsequent additions of MeI or Me3SiCl to give trans-(C6F5)(p-tol3P)2Pt(C≡C)nMe (66-52%) or trans-(C6F5)(p-tol3P)2Pt(C≡C)nSiMe3 (63-49%). However, 31P NMR data suggest more complicated mechanistic scenarios, and small amounts of the hydride complex trans-(C6F5)(p-tol3P)2PtH (independently synthesized from the chloride complex, AgClO4, and NaBH4) are detected in most cases. Analogous sequences involving trans-(C6F5)(p-tol3P)2Pt(C≡C)2H and benzyl bromide, D2O, or W(CO)6/Me3O+ BF4- similarly afford products with Pt(C≡C)2Bn, Pt(C≡C)2D, or Pt(C≡C)2C(OCH3)=W(CO)5 linkages. The crystal structures of the tungsten and corresponding SiMe3 adduct, the three Pt(C≡C)nMe species, and hydride complex are determined.
RESUMO
Bimetallic transition metal complexes with site-specific redox properties offer a versatile platform for understanding electron polarization, intramolecular electron transfer processes, and customizing electronic and magnetic properties that might impact reactivity and catalyst design. Inspired by the dissymmetric nickel sites in the Acetyl CoA Synthase (ACS) Active Site, three new bimetallic Ni(N2S2)-Ni(S2C2R2) complexes based on Ni(N2S2) metalloligand donor synthons, Nid, in mimicry of the nickel site distal to the redox-active iron sulfur cluster of ACS, and nickel dithiolene receiver units, designated as Nip, the nickel proximal to the 4Fe4S cluster, were combined to explore the influence of ligand environment on electronic structure and redox properties of each unit. The combination of synthons gave a matrix of three S-bridged dinickel complexes, characterized by X-ray crystallography, and appropriate spectroscopies. Computational modeling is connected to the electronic characteristics of the nickel donor and receiver units. This study demonstrated the intricacies of identifying sites of electrochemical redox processes, within multi-metallic systems containing non-innocent ligands.
RESUMO
A bimetallic Pd complex of a bis(pincer) with a diarylpyrazine core has been prepared. The complex demonstrates near-perfect coplanarity of the aromatic core, is fluorescent under UV irradiation, and displays two quasi-reversible reduction events.
RESUMO
Cancer's global impact necessitates innovative and less toxic treatments. Thiosemicarbazones (TSCs), adaptable metal chelators, offer such potential. In this study, we have synthesized N (4)-substituted heterocyclic TSCs from syringaldehyde (TSL1, TSL2), and also report the unexpected copper-mediated cyclization of the TSCs to form thiadiazoles (TSL3, TSL4), expanding research avenues. This work includes extensive characterization and studies such as DNA/protein binding, molecular docking, and theoretical analyses to demonstrate the potential of the as-prepared TSCs and thiadiazoles against different cancer cells. The DFT results depict that the thiadiazoles exhibit greater structural stability and reduced reactivity compared to the corresponding TSCs. The docking results suggest superior EGFR inhibition for TSL3 with a binding constant value of - 6.99 Kcal/mol. According to molecular dynamics studies, the TSL3-EGFR complex exhibits a lower average RMSD (1.39 nm) as compared to the TSL1-EGFR complex (3.29 nm) suggesting that both the thiadiazole and thiosemicarbazone examined here can be good inhibitors of EGFR protein, also that TSL3 can inhibit EGFR better than TSL1. ADME analysis indicates drug-likeness and oral availability of the thiadiazole-based drugs. The DNA binding experiment through absorption and emission spectroscopy discovered that TSL3 is more active towards DNA which is quantitatively calculated with a Kb value of 4.74 × 106 M-1, Kq value of 4.04 × 104 M-1and Kapp value of 5 × 106 M-1. Furthermore, the BSA binding studies carried out with fluorescence spectroscopy showed that TSL3 shows better binding capacity (1.64 × 105 M-1) with BSA protein. All the compounds show significant cytotoxicity against A459-lung, MCF-7-breast, and HepG2-liver cancer cell lines; TSL3 exhibits the best cytotoxicity, albeit less effective than cisplatin. Thiadiazoles demonstrate greater cytotoxicity than the TSCs. Overall, the promise of TSCs and thiadiazoles in cancer research is highlighted by this study. Furthermore, it unveils unexpected copper-mediated cyclization of the TSCs to thiadiazoles.
Assuntos
Antineoplásicos , Tiadiazóis , Tiossemicarbazonas , Simulação de Acoplamento Molecular , Teoria da Densidade Funcional , Cobre/farmacologia , Cobre/química , Tiossemicarbazonas/farmacologia , Tiossemicarbazonas/química , Ciclização , Tiadiazóis/farmacologia , Tiadiazóis/química , Espectrometria de Fluorescência , DNA/química , Receptores ErbB/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/químicaRESUMO
A novel Coumarin-based 1,2-pyrazole, HCPyTSC is synthesised and characterized. The chemosensor has been shown to have efficient colourimetric and fluorescence sensing capabilities for the quick and selective detection of fluoride and copper ions. At 376 and 430 nm, the HCPyTSC exhibits selective sensing for Cu2+ and F- ions. By examining the natural bond orbital (NBO) analysis and the potential energy curve (PES) of the ground state for the function of the C-H bond, it has been determined from the theoretical study at hand that the deprotonation was taken from the 'CH' proton of the pyrazole ring. For F- and Cu2+, the HCPyTSC detection limits were 4.62 nM and 15.36 nM, respectively. Similarly, the binding constants (Kb) for F- and Cu2+ ions in acetonitrile medium were found to be 2.06 × 105 M-1 and 1.88 × 105 M-1. Chemosensor HCPyTSC with and without F- and Cu2+ ions have an emission and absorption response that can imitate a variety of logic gates, including the AND, XOR, and OR gates. Additionally, a paper-based sensor strip with the HCPyTSC was created for use in practical, flexible F- sensing applications. The paper-based sensor was more effective in detecting F- than other anions. The effectiveness of HCPyTSC for the selective detection of F- in living cells as well as its cell permeability were examined using live-cell imaging in T24 cells.
RESUMO
Despite the enormous efforts made over the past two decades to develop metallodrugs and nanocarriers for metallodrug delivery, there are still few precise strategies that aim to optimize the design of both metallodrugs and metallodrug carriers jointly in a concerted effort. In this work, three half-sandwich ruthenium(II) complexes with pyridylimidazo[1,5-a]pyridine ligand functionalized with polycyclic aromatic moiety (Ru(nap), Ru(ant), Ru(pyr)) are evaluated as possible anticancer candidates and polydiacetylene (PDA)-coated amino-functionalized mesoporous silica nanoparticles (AMSNs) are designed as a functional nanocarrier for drug delivery. Ru(pyr) exhibits higher cytotoxicity in HT-29 colorectal cancer cells compared to other complexes and cis-platin, but it does not exhibit better cellular uptake. Ru(pyr) is found to be preferentially accumulated in plasma, mitochondria, and ER-Golgi membrane. The complex induces cell cycle arrest in the G0/G1 phase, while higher concentrations cause programmed cell death via apoptosis. Ru(pyr) influences cancer cell adhesion property and acts as an antioxidant in HT-29 cells. In order to modulate the anticancer potency of Ru(pyr), AMSNs are used to encapsulate the complex, and then diacetylene self-assembly is allowed to deposit on the surface of the nanoparticles. Subsequently, the nanoparticles undergo topopolymerization, which results in π-conjugated PDA-Ru(pyr)@AMSNs. Owing to the ene-yne polymeric skeleton in the backbone, the non-fluorescent AMSNs turn into red-emissive particles, which are exploited for cell imaging applications. The release profile analysis reveals that such a π-conjugated polymer prevents the premature release of the complex from porous silica nanoparticles with the accelerated release of the complex in an acidic medium compared to physiological conditions. The PDA gatekeepers have also been proven to enhance the cellular internalization of Ru(pyr) with slow continuous release from the nanoformulation. Zebrafish embryo toxicity analysis suggests that the PDA-coated nanocarriers could be suitable candidates for in vivo investigations.
Assuntos
Antineoplásicos , Polímero Poliacetilênico , Rutênio , Animais , Linhagem Celular Tumoral , Peixe-Zebra , Sistemas de Liberação de Medicamentos , Polímeros , Dióxido de Silício/farmacologia , Rutênio/farmacologia , Antineoplásicos/farmacologiaRESUMO
The design and synthesis of ferrocene-functionalized organic small molecules using quinoline cores are rendered to achieve a ternary write-once-read-many (WORM) memory device. Introducing an electron-withdrawing group into the ferrocene system changes the compounds' photophysical, electrochemical, and memory behavior. The compounds were synthesized with and without an acetylene bridge between the ferrocene unit and quinoline. The electrochemical studies proved the oxidation behavior with a slightly less intense reduction peak of the ferrocene unit, demonstrating that quinolines have more reducing properties than ferrocene with bandgaps ranging from 2.67-2.75 eV. The single crystal analysis of the compounds also revealed good interactive interactions, ensuring good molecular packing. This further leads to a ternary WORM memory with oxidation of the ferrocene units and charge transfer in the compounds. The devices exhibit on/off ratios of 104 and very low threshold voltages of -0.58/-1.02 V with stabilities of 103 s and 100 cycles of all the states through retention and endurance tests.
RESUMO
Photolyses of trans-Fe(CO)3 (P((CH2 )n )3 P) (n=10 (a), 12 (b), 14 (c), 16 (d), 18 (e)) in the presence of PMe3 provide the first economical and scalable route to macrobicyclic dibridgehead diphosphines P((CH2 )n )3 P (1). These are isolated as mixtures of in,in/out,out isomers that equilibrate with degenerate in,out/out,in isomers at 150 °C via pyramidal inversion at phosphorus. For the entire series, VT 31 P NMR data establish or bound Keq , rates, and activation parameters for a variety of phenomena, many of which involve homeomorphic isomerizations, topological processes by which certain molecules can turn themselves inside out (e. g., in,inâout,out). This provides the first detailed mapping of such trends in homologous series of aliphatic bicyclic compounds XE((CH2 )n )3 EX with any type of bridgehead. Isomeric diborane adducts 1 a,d â 2BH3 are also characterized. Crystal structures of out,out-1 a and in,in-1 a â 2BH3 aid isomer assignments and reveal unusual cage conformations.
RESUMO
An efficient, secondary amine-catalyzed cascade annulation of 2-O/N-propargylarylaldehydes with 2,6-dialkylphenols was established to access biologically relevant functionalized 2H-chromenes and 1,2-dihydroquinolines tethered with a synthetically useful p-quinone methide scaffold in high yields under microwave irradiation and conventional heating conditions. The microwave-assisted strategy was convenient, clean, rapid, and high yielding in which the reactions were completed in just 15 min, and the yields obtained were up to 95%. This highly atom-economical domino process constructed two new C-C double bonds and a six-membered O/N-heterocyclic ring in a single synthetic operation. Its mechanism process was rationalized as involving sequential iminium ion formation, nucleophilic addition, and intramolecular annulation steps. Furthermore, the synthesized 2H-chromene derivatives were transformed into valuable indeno[2,1-c]chromenes, 5H-indeno[2,1-c]quinolines, and oxireno[2,3-c]chromene via a palladium-catalyzed double C-H bond activation process and epoxidation, respectively.
RESUMO
This report describes the synthesis of a new NNSe pincer ligand and its mono- and dinuclear palladium(II) pincer complexes. In the absence of a base, a dinuclear palladium pincer complex (C1) was isolated, while in the presence of Et3 N base a mononuclear palladium pincer complex (C2) was obtained. The new ligand and complexes were characterized using techniques like 1 H, 13 C{1 H} nuclear magnetic resonance (NMR), fourier transform infrared (FTIR), high-resolution mass spectrometry (HRMS), ultraviolet-visible (UV-Visible), and cyclic voltammetry. Both the complexes showed pincer coordination mode with a distorted square planar geometry. The complex C1 has two pincer ligands attached through a Pd-Pd bond in a dinuclear pincer fashion. The air and moisture-insensitive, thermally robust palladium pincer complexes were used as the catalyst for decarboxylative direct C-H heteroarylation of (hetero)arenes. Among the complexes, dinuclear pincer complex C1 showed better catalytic activity. A variety of (hetero)arenes were successfully activated (43-87 % yield) using only 2.5â mol % of catalyst loading under mild reaction conditions. The PPh3 and Hg poisoning experiments suggested a homogeneous nature of catalysis. A plausible reaction pathway was proposed for the dinuclear palladium pincer complex catalyzed decarboxylative C-H bond activation reaction of (hetero)arenes.
RESUMO
Characterization of reactive intermediates in C-H functionalization is challenging due to the fleeting lifetimes of these species. Synthetic photochemistry provides a strategy to generate post-turnover-limiting-step intermediates in catalysis under cryogenic conditions that enable characterization. We have a long-standing interest in the structure and reactivity of Rh2 nitrene intermediates, which are implicated as transient intermediates in Rh2-catalyzed C-H amination. Previously, we demonstrated that Rh2 complexes bearing organic azide ligands can serve as solid-state and in crystallo photoprecursors in the synthesis of transient Rh2 nitrenoids. Complementary solution-phase experiments have not been available due to the weak binding of most organic azides to Rh2 complexes. Furthermore, the volatility of the N2 that is evolved during in crystallo nitrene synthesis from these precursors has prevented the in crystallo observation of C-H functionalization from lattice-confined nitrenes. Motivated by these challenges, here we describe the synthesis and photochemistry of nonclassical nitrene precursors based on sulfilimine ligands. Sulfilimines bind to Rh2 carboxylate complexes more tightly than the corresponding azides, which has enabled the full solid-state and solution-phase characterization of these new complexes. The higher binding affinity of sulfilimine ligands as compared with organic azides has enabled both solution-phase and solid-state nitrene photochemistry. Cryogenic photochemical studies of Rh2 sulfilimine complexes confined within polystyrene thin films demonstrate that sulfilimine photochemistry can be accomplished at low temperature but that C-H amination is rapid at temperatures compatible with NâS photoactivation. The potential of these structures to serve as platforms for multistep in crystallo cascades is discussed.
RESUMO
The title compound, C22H18N2O2, is a Schiff base obtained by condensing p-arnisidine (4-meth-oxy-aniline) with N-benzyl-isatin (1-benzyl-1H-indole-2,3-dione), which crystallizes in the triclinic P space group. The benzyl and phenyl rings subtend dihedral angles of 76.08â (7) and 60.70â (6)°, respectively, with the isatin group. The imino C=N double bond exists in an E conformation.
RESUMO
An efficient, diversity-oriented synthesis of oxazepino[5,4-b]quinazolin-9-ones, 6H-chromeno[4,3-b]quinolines, and dibenzo[b,h][1,6]naphthyridines was established involving a substrate-based approach under microwave-assisted and conventional heating conditions in high yields (up to 88%). The CuBr2-catalyzed, chemoselective cascade annulation of O-propargylated 2-hydroxybenzaldehydes and 2-aminobenzamides delivered oxazepino[5,4-b]quinazolin-9-ones involving a 6-exo-trig cyclization-air oxidation-1,3-proton shift-7-exo-dig cyclization sequence. This one-pot process showed excellent atom economy (-H2O) and constructed two new heterocyclic rings (six- and seven-membered) and three new C-N bonds in a single synthetic operation. On the other side of diversification, the reaction between O/N-propargylated 2-hydroxy/aminobenzaldehydes and 2-aminobenzyl alcohols delivered 6H-chromeno[4,3-b]quinolines and dibenzo[b,h][1,6]naphthyridines involving sequential imine formation-[4 + 2] hetero-Diels-Alder reaction-aromatization steps. The influence of microwave assistance was superior to conventional heating, where the reactions were clean, rapid, and completed in 15 min, and the conventional heating required a longer reaction time at a relatively elevated temperature.
Assuntos
Oxazepinas , Quinolinas , Estrutura Molecular , Micro-Ondas , Nitrogênio , NaftiridinasRESUMO
The study of a layered crystalline Sn(IV) phosphate by solid-state NMR has demonstrated that the 31P T1 relaxation of phosphate groups, dependent on spinning rate is completely controlled by the limited spin diffusion to paramagnetic ions found by EPR. The spin-diffusion constant, D(SD), was estimated as 2.04 10-14 cm2s-1. The conclusion was supported by the 31P T1 time measurements in zirconium phosphate 1-1, also showing paramagnetic ions and in diamagnetic compound (NH4)2HPO4.