Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Curr Atheroscler Rep ; 23(11): 66, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34468876

RESUMO

PURPOSE OF REVIEW: Clonal hematopoiesis of indeterminate potential (CHIP) is a novel cardiovascular risk factor that develops as aging hematopoietic stem cells (HSCs) acquire somatic mutations which confer a clonal survival advantage in their progeny. These cells confer increased leukemogenic risk but confer a greater absolute risk of cardiovascular disease-which appears to be mediated through altered inflammatory pathways. Here we review the evidence the risk of cardiovascular disease conferred by CHIP. We also review the evidence regarding risk factors associated with CHIP. RECENT FINDINGS: The most recent evidence suggests that CHIP is associated with increased cardiovascular risk beyond atherosclerosis, which has been established in multiple studies, but also in heart failure and aortic valve stenosis. Additionally, the list of conditions associated with CHIP continues to grow including germline genetics, smoking, cancer therapies, radiation exposure, premature menopause, and unhealthy diet. CHIP is a cardiovascular risk factor of increasingly recognized importance, and new data continues to emerge about the risks it confers, which will need more prospective validation. Although risk factors for CHIP are being identified, relatively little is known about the mechanisms by which CHIP develops, which requires further study.

2.
Haematologica ; 2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34587722

RESUMO

Not available.

3.
JAMA Netw Open ; 4(8): e2119084, 2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34347061

RESUMO

Importance: Multiple polygenic risk scores (PRSs) for breast cancer have been developed from large research consortia; however, their generalizability to diverse clinical settings is unknown. Objective: To examine the performance of previously developed breast cancer PRSs in a clinical setting for women of European, African, and Latinx ancestry. Design, Setting, and Participants: This cohort study using the Electronic Medical Records and Genomics (eMERGE) network data set included 39 591 women from 9 contributing medical centers in the US that had electronic medical records (EMR) linked to genotype data. Breast cancer cases and controls were identified through a validated EMR phenotyping algorithm. Main Outcomes and Measures: Multivariable logistic regression was used to assess the association between breast cancer risk and 7 previously developed PRSs, adjusting for age, study site, breast cancer family history, and first 3 ancestry informative principal components. Results: This study included 39 591 women: 33 594 with European, 3801 with African, and 2196 with Latinx ancestry. The mean (SD) age at breast cancer diagnosis was 60.7 (13.0), 58.8 (12.5), and 60.1 (13.0) years for women with European, African, and Latinx ancestry, respectively. PRSs derived from women with European ancestry were associated with breast cancer risk in women with European ancestry (highest odds ratio [OR] per 1-SD increase, 1.46; 95% CI, 1.41-1.51), women with Latinx ancestry (highest OR, 1.31; 95% CI, 1.09-1.58), and women with African ancestry (OR, 1.19; 95% CI, 1.05-1.35). For women with European ancestry, this association with breast cancer risk was largest in the extremes of the PRS distribution, with ORs ranging from 2.19 (95% CI, 1.84-2.53) to 2.48 (95% CI, 1.89-3.25) for the 3 different PRSs examined for those in the highest 1% of the PRS compared with those in the middle quantile. Among women with Latinx and African ancestries at the extremes of the PRS distribution, there were no statistically significant associations. Conclusions and Relevance: This cohort study found that PRS models derived from women with European ancestry for breast cancer risk generalized well for women with European, Latinx, and African ancestries across different clinical settings, although the effect sizes for women with African ancestry were smaller, likely because of differences in risk allele frequencies and linkage disequilibrium patterns. These results highlight the need to improve representation of diverse population groups, particularly women with African ancestry, in genomic research cohorts.

4.
J Am Coll Cardiol ; 78(1): 42-52, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34210413

RESUMO

BACKGROUND: Age-related clonal hematopoiesis of indeterminate potential (CHIP), defined as clonally expanded leukemogenic sequence variations (particularly in DNMT3A, TET2, ASXL1, and JAK2) in asymptomatic individuals, is associated with cardiovascular events, including recurrent heart failure (HF). OBJECTIVES: This study sought to evaluate whether CHIP is associated with incident HF. METHODS: CHIP status was obtained from whole exome or genome sequencing of blood DNA in participants without prevalent HF or hematological malignancy from 5 cohorts. Cox proportional hazards models were performed within each cohort, adjusting for demographic and clinical risk factors, followed by fixed-effect meta-analyses. Large CHIP clones (defined as variant allele frequency >10%), HF with or without baseline coronary heart disease, and left ventricular ejection fraction were evaluated in secondary analyses. RESULTS: Of 56,597 individuals (59% women, mean age 58 years at baseline), 3,406 (6%) had CHIP, and 4,694 developed HF (8.3%) over up to 20 years of follow-up. CHIP was prospectively associated with a 25% increased risk of HF in meta-analysis (hazard ratio: 1.25; 95% confidence interval: 1.13-1.38) with consistent associations across cohorts. ASXL1, TET2, and JAK2 sequence variations were each associated with an increased risk of HF, whereas DNMT3A sequence variations were not associated with HF. Secondary analyses suggested large CHIP was associated with a greater risk of HF (hazard ratio: 1.29; 95% confidence interval: 1.15-1.44), and the associations for CHIP on HF with and without prior coronary heart disease were homogenous. ASXL1 sequence variations were associated with reduced left ventricular ejection fraction. CONCLUSIONS: CHIP, particularly sequence variations in ASXL1, TET2, and JAK2, represents a new risk factor for HF.


Assuntos
Hematopoiese Clonal/genética , Proteínas de Ligação a DNA/genética , Insuficiência Cardíaca , Janus Quinase 2/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Repressoras/genética , Disfunção Ventricular Esquerda , Idoso , Correlação de Dados , Demografia , Feminino , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/epidemiologia , Insuficiência Cardíaca/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Modelos de Riscos Proporcionais , Fatores de Risco , Volume Sistólico , Disfunção Ventricular Esquerda/diagnóstico , Disfunção Ventricular Esquerda/genética , Sequenciamento Completo do Exoma/métodos
6.
Nat Med ; 27(6): 1012-1024, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34099924

RESUMO

Age is the dominant risk factor for infectious diseases, but the mechanisms linking age to infectious disease risk are incompletely understood. Age-related mosaic chromosomal alterations (mCAs) detected from genotyping of blood-derived DNA, are structural somatic variants indicative of clonal hematopoiesis, and are associated with aberrant leukocyte cell counts, hematological malignancy, and mortality. Here, we show that mCAs predispose to diverse types of infections. We analyzed mCAs from 768,762 individuals without hematological cancer at the time of DNA acquisition across five biobanks. Expanded autosomal mCAs were associated with diverse incident infections (hazard ratio (HR) 1.25; 95% confidence interval (CI) = 1.15-1.36; P = 1.8 × 10-7), including sepsis (HR 2.68; 95% CI = 2.25-3.19; P = 3.1 × 10-28), pneumonia (HR 1.76; 95% CI = 1.53-2.03; P = 2.3 × 10-15), digestive system infections (HR 1.51; 95% CI = 1.32-1.73; P = 2.2 × 10-9) and genitourinary infections (HR 1.25; 95% CI = 1.11-1.41; P = 3.7 × 10-4). A genome-wide association study of expanded mCAs identified 63 loci, which were enriched at transcriptional regulatory sites for immune cells. These results suggest that mCAs are a marker of impaired immunity and confer increased predisposition to infections.


Assuntos
Envelhecimento/genética , Doenças Transmissíveis/genética , Pneumonia/genética , Sepse/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/patologia , Bancos de Espécimes Biológicos , Aberrações Cromossômicas , Doenças Transmissíveis/complicações , Doenças Transmissíveis/microbiologia , Doenças do Sistema Digestório/epidemiologia , Doenças do Sistema Digestório/genética , Doenças do Sistema Digestório/microbiologia , Feminino , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Genótipo , Neoplasias Hematológicas/complicações , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/microbiologia , Humanos , Masculino , Pessoa de Meia-Idade , Mosaicismo , Pneumonia/epidemiologia , Pneumonia/microbiologia , Fatores de Risco , Sepse/epidemiologia , Sepse/microbiologia , Anormalidades Urogenitais/epidemiologia , Anormalidades Urogenitais/genética , Anormalidades Urogenitais/microbiologia , Adulto Jovem
7.
Nat Rev Genet ; 22(9): 603-617, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33986496

RESUMO

Clonal haematopoiesis (CH) is a common, age-related expansion of blood cells with somatic mutations that is associated with an increased risk of haematological malignancies, cardiovascular disease and all-cause mortality. CH may be caused by point mutations in genes associated with myeloid neoplasms, chromosomal copy number changes and loss of heterozygosity events. How inherited and environmental factors shape the incidence of CH is incompletely understood. Even though the several varieties of CH may have distinct phenotypic consequences, recent research points to an underlying genetic architecture that is highly overlapping. Moreover, there are numerous commonalities between the inherited variation associated with CH and that which has been linked to age-associated biomarkers and diseases. In this Review, we synthesize what is currently known about how inherited variation shapes the risk of CH and how this genetic architecture intersects with the biology of diseases that occur with ageing.


Assuntos
Envelhecimento , Doenças Cardiovasculares/patologia , Hematopoiese Clonal , Células Germinativas/metabolismo , Mutação , Doenças Cardiovasculares/genética , Humanos
8.
Aging Cell ; 20(6): e13366, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34050697

RESUMO

Clonal hematopoiesis of indeterminate potential (CHIP) is a common precursor state for blood cancers that most frequently occurs due to mutations in the DNA-methylation modifying enzymes DNMT3A or TET2. We used DNA-methylation array and whole-genome sequencing data from four cohorts together comprising 5522 persons to study the association between CHIP, epigenetic clocks, and health outcomes. CHIP was strongly associated with epigenetic age acceleration, defined as the residual after regressing epigenetic clock age on chronological age, in several clocks, ranging from 1.31 years (GrimAge, p < 8.6 × 10-7 ) to 3.08 years (EEAA, p < 3.7 × 10-18 ). Mutations in most CHIP genes except DNA-damage response genes were associated with increases in several measures of age acceleration. CHIP carriers with mutations in multiple genes had the largest increases in age acceleration and decrease in estimated telomere length. Finally, we found that ~40% of CHIP carriers had acceleration >0 in both Hannum and GrimAge (referred to as AgeAccelHG+). This group was at high risk of all-cause mortality (hazard ratio 2.90, p < 4.1 × 10-8 ) and coronary heart disease (CHD) (hazard ratio 3.24, p < 9.3 × 10-6 ) compared to those who were CHIP-/AgeAccelHG-. In contrast, the other ~60% of CHIP carriers who were AgeAccelHG- were not at increased risk of these outcomes. In summary, CHIP is strongly linked to age acceleration in multiple clocks, and the combination of CHIP and epigenetic aging may be used to identify a population at high risk for adverse outcomes and who may be a target for clinical interventions.

10.
J Am Heart Assoc ; 10(5): e018789, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33619969

RESUMO

Background Presence of clonal hematopoiesis of indeterminate potential (CHIP) is associated with a higher risk of atherosclerotic cardiovascular disease, cancer, and mortality. The relationship between a healthy lifestyle and CHIP is unknown. Methods and Results This analysis included 8709 postmenopausal women (mean age, 66.5 years) enrolled in the WHI (Women's Health Initiative), free of cancer or cardiovascular disease, with deep-coverage whole genome sequencing data available. Information on lifestyle factors (body mass index, smoking, physical activity, and diet quality) was obtained, and a healthy lifestyle score was created on the basis of healthy criteria met (0 point [least healthy] to 4 points [most healthy]). CHIP was derived on the basis of a prespecified list of leukemogenic driver mutations. The prevalence of CHIP was 8.6%. A higher healthy lifestyle score was not associated with CHIP (multivariable-adjusted odds ratio [OR] [95% CI], 0.99 [0.80-1.23] and 1.13 [0.93-1.37]) for the upper (3 or 4 points) and middle category (2 points), respectively, versus referent (0 or 1 point). Across score components, a normal and overweight body mass index compared with obese was significantly associated with a lower odds for CHIP (OR, 0.71 [95% CI, 0.57-0.88] and 0.83 [95% CI, 0.68-1.01], respectively; P-trend 0.0015). Having never smoked compared with being a current smoker tended to be associated with lower odds for CHIP. Conclusions A healthy lifestyle, based on a composite score, was not related to CHIP among postmenopausal women. However, across individual lifestyle factors, having a normal body mass index was strongly associated with a lower prevalence of CHIP. These findings support the idea that certain healthy lifestyle factors are associated with a lower frequency of CHIP.


Assuntos
Doenças Cardiovasculares/etiologia , Hematopoiese Clonal/fisiologia , DNA/genética , Estilo de Vida , Pós-Menopausa , Saúde da Mulher , Idoso , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/genética , Feminino , Frequência do Gene , Humanos , Pessoa de Meia-Idade , Prevalência , Estudos Retrospectivos , Estados Unidos/epidemiologia
11.
Circulation ; 143(5): 410-423, 2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33161765

RESUMO

BACKGROUND: Premature menopause is an independent risk factor for cardiovascular disease in women, but mechanisms underlying this association remain unclear. Clonal hematopoiesis of indeterminate potential (CHIP), the age-related expansion of hematopoietic cells with leukemogenic mutations without detectable malignancy, is associated with accelerated atherosclerosis. Whether premature menopause is associated with CHIP is unknown. METHODS: We included postmenopausal women from the UK Biobank (n=11 495) aged 40 to 70 years with whole exome sequences and from the Women's Health Initiative (n=8111) aged 50 to 79 years with whole genome sequences. Premature menopause was defined as natural or surgical menopause occurring before age 40 years. Co-primary outcomes were the presence of any CHIP and CHIP with variant allele frequency >0.1. Logistic regression tested the association of premature menopause with CHIP, adjusted for age, race, the first 10 principal components of ancestry, smoking, diabetes, and hormone therapy use. Secondary analyses considered natural versus surgical premature menopause and gene-specific CHIP subtypes. Multivariable-adjusted Cox models tested the association between CHIP and incident coronary artery disease. RESULTS: The sample included 19 606 women, including 418 (2.1%) with natural premature menopause and 887 (4.5%) with surgical premature menopause. Across cohorts, CHIP prevalence in postmenopausal women with versus without a history of premature menopause was 8.8% versus 5.5% (P<0.001), respectively. After multivariable adjustment, premature menopause was independently associated with CHIP (all CHIP: odds ratio, 1.36 [95% 1.10-1.68]; P=0.004; CHIP with variant allele frequency >0.1: odds ratio, 1.40 [95% CI, 1.10-1.79]; P=0.007). Associations were larger for natural premature menopause (all CHIP: odds ratio, 1.73 [95% CI, 1.23-2.44]; P=0.001; CHIP with variant allele frequency >0.1: odds ratio, 1.91 [95% CI, 1.30-2.80]; P<0.001) but smaller and nonsignificant for surgical premature menopause. In gene-specific analyses, only DNMT3A CHIP was significantly associated with premature menopause. Among postmenopausal middle-aged women, CHIP was independently associated with incident coronary artery disease (hazard ratio associated with all CHIP: 1.36 [95% CI, 1.07-1.73]; P=0.012; hazard ratio associated with CHIP with variant allele frequency >0.1: 1.48 [95% CI, 1.13-1.94]; P=0.005). CONCLUSIONS: Premature menopause, especially natural premature menopause, is independently associated with CHIP among postmenopausal women. Natural premature menopause may serve as a risk signal for predilection to develop CHIP and CHIP-associated cardiovascular disease.

12.
medRxiv ; 2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-33236019

RESUMO

Age is the dominant risk factor for infectious diseases, but the mechanisms linking the two are incompletely understood 1,2 . Age-related mosaic chromosomal alterations (mCAs) detected from blood-derived DNA genotyping, are structural somatic variants associated with aberrant leukocyte cell counts, hematological malignancy, and mortality 3-11 . Whether mCAs represent independent risk factors for infection is unknown. Here we use genome-wide genotyping of blood DNA to show that mCAs predispose to diverse infectious diseases. We analyzed mCAs from 767,891 individuals without hematological cancer at DNA acquisition across four countries. Expanded mCA (cell fraction >10%) prevalence approached 4% by 60 years of age and was associated with diverse incident infections, including sepsis, pneumonia, and coronavirus disease 2019 (COVID-19) hospitalization. A genome-wide association study of expanded mCAs identified 63 significant loci. Germline genetic alleles associated with expanded mCAs were enriched at transcriptional regulatory sites for immune cells. Our results link mCAs with impaired immunity and predisposition to infections. Furthermore, these findings may also have important implications for the ongoing COVID-19 pandemic, particularly in prioritizing individual preventive strategies and evaluating immunization responses.

13.
medRxiv ; 2020 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-33173934

RESUMO

People living with human immunodeficiency virus (PLWH) have significantly increased risk for cardiovascular disease in part due to inflammation and immune dysregulation. Clonal hematopoiesis of indeterminate potential (CHIP), the age-related acquisition and expansion of hematopoietic stem cells due to leukemogenic driver mutations, increases risk for both hematologic malignancy and coronary artery disease (CAD). Since increased inflammation is hypothesized to be both a cause and consequence of CHIP, we hypothesized that PLWH have a greater prevalence of CHIP. We searched for CHIP in multi-ethnic cases from the Swiss HIV Cohort Study (SHCS, n=600) and controls from the Atherosclerosis Risk in the Communities study (ARIC, n=8,111) from blood DNA-derived exome sequences. We observed that HIV is associated with increased CHIP prevalence, both in the whole study population and in a subset of 230 cases and 1002 matched controls selected by propensity matching to control for demographic imbalances (SHCS 7%, ARIC 3%, p=0.005). Additionally, unlike in ARIC, ASXL1 was the most commonly implicated mutated CHIP gene. We propose that CHIP may be one mechanism through which PLWH are at increased risk for CAD. Larger prospective studies should evaluate the hypothesis that CHIP contributes to the excess cardiovascular risk in PLWH.

14.
Nature ; 586(7831): 769-775, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33057200

RESUMO

Myeloproliferative neoplasms (MPNs) are blood cancers that are characterized by the excessive production of mature myeloid cells and arise from the acquisition of somatic driver mutations in haematopoietic stem cells (HSCs). Epidemiological studies indicate a substantial heritable component of MPNs that is among the highest known for cancers1. However, only a limited number of genetic risk loci have been identified, and the underlying biological mechanisms that lead to the acquisition of MPNs remain unclear. Here, by conducting a large-scale genome-wide association study (3,797 cases and 1,152,977 controls), we identify 17 MPN risk loci (P < 5.0 × 10-8), 7 of which have not been previously reported. We find that there is a shared genetic architecture between MPN risk and several haematopoietic traits from distinct lineages; that there is an enrichment for MPN risk variants within accessible chromatin of HSCs; and that increased MPN risk is associated with longer telomere length in leukocytes and other clonal haematopoietic states-collectively suggesting that MPN risk is associated with the function and self-renewal of HSCs. We use gene mapping to identify modulators of HSC biology linked to MPN risk, and show through targeted variant-to-function assays that CHEK2 and GFI1B have roles in altering the function of HSCs to confer disease risk. Overall, our results reveal a previously unappreciated mechanism for inherited MPN risk through the modulation of HSC function.


Assuntos
Predisposição Genética para Doença/genética , Células-Tronco Hematopoéticas/patologia , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/patologia , Neoplasias/genética , Neoplasias/patologia , Linhagem da Célula/genética , Autorrenovação Celular , Quinase do Ponto de Checagem 2/genética , Feminino , Humanos , Leucócitos/patologia , Masculino , Proteínas Proto-Oncogênicas/genética , Proteínas Repressoras/genética , Risco , Homeostase do Telômero
15.
Nature ; 586(7831): 763-768, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33057201

RESUMO

Age is the dominant risk factor for most chronic human diseases, but the mechanisms through which ageing confers this risk are largely unknown1. The age-related acquisition of somatic mutations that lead to clonal expansion in regenerating haematopoietic stem cell populations has recently been associated with both haematological cancer2-4 and coronary heart disease5-this phenomenon is termed clonal haematopoiesis of indeterminate potential (CHIP)6. Simultaneous analyses of germline and somatic whole-genome sequences provide the opportunity to identify root causes of CHIP. Here we analyse high-coverage whole-genome sequences from 97,691 participants of diverse ancestries in the National Heart, Lung, and Blood Institute Trans-omics for Precision Medicine (TOPMed) programme, and identify 4,229 individuals with CHIP. We identify associations with blood cell, lipid and inflammatory traits that are specific to different CHIP driver genes. Association of a genome-wide set of germline genetic variants enabled the identification of three genetic loci associated with CHIP status, including one locus at TET2 that was specific to individuals of African ancestry. In silico-informed in vitro evaluation of the TET2 germline locus enabled the identification of a causal variant that disrupts a TET2 distal enhancer, resulting in increased self-renewal of haematopoietic stem cells. Overall, we observe that germline genetic variation shapes haematopoietic stem cell function, leading to CHIP through mechanisms that are specific to clonal haematopoiesis as well as shared mechanisms that lead to somatic mutations across tissues.


Assuntos
Hematopoiese Clonal/genética , Predisposição Genética para Doença , Genoma Humano/genética , Sequenciamento Completo do Genoma , Adulto , África/etnologia , Grupo com Ancestrais do Continente Africano/genética , Idoso , Idoso de 80 Anos ou mais , Autorrenovação Celular/genética , Proteínas de Ligação a DNA/genética , Feminino , Mutação em Linhagem Germinativa/genética , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Pessoa de Meia-Idade , National Heart, Lung, and Blood Institute (U.S.) , Fenótipo , Medicina de Precisão , Proteínas Proto-Oncogênicas/genética , Proteínas com Motivo Tripartido/genética , Estados Unidos , alfa Carioferinas/genética
16.
Nat Commun ; 11(1): 3635, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32820175

RESUMO

Genetic variation can predispose to disease both through (i) monogenic risk variants that disrupt a physiologic pathway with large effect on disease and (ii) polygenic risk that involves many variants of small effect in different pathways. Few studies have explored the interplay between monogenic and polygenic risk. Here, we study 80,928 individuals to examine whether polygenic background can modify penetrance of disease in tier 1 genomic conditions - familial hypercholesterolemia, hereditary breast and ovarian cancer, and Lynch syndrome. Among carriers of a monogenic risk variant, we estimate substantial gradients in disease risk based on polygenic background - the probability of disease by age 75 years ranged from 17% to 78% for coronary artery disease, 13% to 76% for breast cancer, and 11% to 80% for colon cancer. We propose that accounting for polygenic background is likely to increase accuracy of risk estimation for individuals who inherit a monogenic risk variant.


Assuntos
Predisposição Genética para Doença , Herança Multifatorial/genética , Penetrância , Idoso , Neoplasias da Mama/genética , Estudos de Casos e Controles , Neoplasias Colorretais/genética , Doença da Artéria Coronariana/genética , Feminino , Genoma Humano , Humanos , Masculino , Pessoa de Meia-Idade , Razão de Chances , Fatores de Risco
17.
medRxiv ; 2020 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-32577670

RESUMO

COVID-19 is one of the most consequential pandemics in the last century, yet the biological mechanisms that confer disease risk are incompletely understood. Further, heterogeneity in disease outcomes is influenced by race, though the relative contributions of structural/social and genetic factors remain unclear. Very recent unpublished work has identified two genetic risk loci that confer greater risk for respiratory failure in COVID-19: the ABO locus and the 3p21.31 locus. To understand how these loci might confer risk and whether this differs by race, we utilized proteomic profiling and genetic information from three cohorts including black and white participants to identify proteins influenced by these loci. We observed that variants in the ABO locus are associated with levels of CD209/DC-SIGN, a known binding protein for SARS-CoV and other viruses, as well as multiple inflammatory and thrombotic proteins, while the 3p21.31 locus is associated with levels of CXCL16, a known inflammatory chemokine. Thus, integration of genetic information and proteomic profiling in biracial cohorts highlights putative mechanisms for genetic risk in COVID-19 disease.

18.
J Grad Med Educ ; 12(2): 162-167, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32322349

RESUMO

Background: Parenting issues can affect physicians' choice of specialty or subspecialty, as well as their selection of individual training programs, because of the distinctive challenges facing residents and fellows with children. Specific information about how residents perceive these challenges is limited. Objective: We sought to better understand the challenges associated with parenting during residency and fellowship training in order to inform policy and research. Methods: In 2017, a voluntary online questionnaire was distributed to all 2214 Partners HealthCare graduate medical education trainees across 285 training programs. The survey queried attitudes of and about trainees with children and assessed needs and experiences related to parental leave, lactation, and childcare. Responses were compared between subgroups, including gender, surgical versus nonsurgical specialty, parental status, and whether the respondent was planning to become a parent. Results: A total of 578 trainees (26%) responded to the questionnaire. Of these, 195 (34%) became parents during training. An additional 298 (52%) planned to become parents during training. Respondents overwhelmingly agreed that their institution should support trainees with children (95%) and that doing so is important for trainee wellness (98%). However, 25% felt that trainees with children burden trainees without children. Childcare access, affordability, and availability for sufficient hours were identified as key challenges, along with issues related to parental leave, lactation facilities, and effect on peers. Conclusions: This survey highlights trainees' perspectives about parenting during their clinical training, signaling parental leave, lactation facilities, and childcare access and affordability as particular challenges and potential targets for future interventions.


Assuntos
Bolsas de Estudo/organização & administração , Internato e Residência/organização & administração , Poder Familiar , Adulto , Atitude do Pessoal de Saúde , Cuidado da Criança/economia , Cuidado da Criança/estatística & dados numéricos , Pré-Escolar , Educação de Pós-Graduação em Medicina , Bolsas de Estudo/estatística & dados numéricos , Feminino , Humanos , Lactente , Internato e Residência/estatística & dados numéricos , Lactação , Masculino , Massachusetts , Determinação de Necessidades de Cuidados de Saúde , Licença Parental/estatística & dados numéricos , Gravidez , Inquéritos e Questionários
20.
Circulation ; 141(2): 124-131, 2020 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-31707836

RESUMO

BACKGROUND: Clonal hematopoiesis of indeterminate potential (CHIP) refers to clonal expansion of hematopoietic stem cells attributable to acquired leukemic mutations in genes such as DNMT3A or TET2. In humans, CHIP associates with prevalent myocardial infarction. In mice, CHIP accelerates atherosclerosis and increases IL-6/IL-1ß expression, raising the hypothesis that IL-6 pathway antagonism in CHIP carriers would decrease cardiovascular disease (CVD) risk. METHODS: We analyzed exome sequences from 35 416 individuals in the UK Biobank without prevalent CVD, to identify participants with DNMT3A or TET2 CHIP. We used the IL6R p.Asp358Ala coding mutation as a genetic proxy for IL-6 inhibition. We tested the association of CHIP status with incident CVD events (myocardial infarction, coronary revascularization, stroke, or death), and whether it was modified by IL6R p.Asp358Ala. RESULTS: We identified 1079 (3.0%) individuals with CHIP, including 432 (1.2%) with large clones (allele fraction >10%). During 6.9-year median follow-up, CHIP associated with increased incident CVD event risk (hazard ratio, 1.27 [95% CI, 1.04-1.56], P=0.019), with greater risk from large CHIP clones (hazard ratio, 1.59 [95% CI, 1.21-2.09], P<0.001). IL6R p.Asp358Ala attenuated CVD event risk among participants with large CHIP clones (hazard ratio, 0.46 [95% CI, 0.29-0.73], P<0.001) but not in individuals without CHIP (hazard ratio, 0.95 [95% CI, 0.89-1.01], P=0.08; Pinteraction=0.003). In 9951 independent participants, the association of CHIP status with myocardial infarction similarly varied by IL6R p.Asp358Ala (Pinteraction=0.036). CONCLUSIONS: CHIP is associated with increased risk of incident CVD. Among carriers of large CHIP clones, genetically reduced IL-6 signaling abrogated this risk.


Assuntos
Doenças Cardiovasculares/patologia , Interleucina-6/metabolismo , Receptores de Interleucina-6/genética , Idoso , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/genética , Evolução Clonal , Feminino , Hematopoese , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Modelos de Riscos Proporcionais , Estudos Prospectivos , Fatores de Risco , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...