Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Mais filtros

Base de dados
Intervalo de ano de publicação
Mol Ther Nucleic Acids ; 25: 237-250, 2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34458008


Gene editing via homology-directed repair (HDR) currently comprises the best strategy to obtain perfect corrections for pathogenic mutations of monogenic diseases, such as the severe recessive dystrophic form of the blistering skin disease epidermolysis bullosa (RDEB). Limitations of this strategy, in particular low efficiencies and off-target effects, hinder progress toward clinical applications. However, the severity of RDEB necessitates the development of efficient and safe gene-editing therapies based on perfect repair. To this end, we sought to assess the corrective efficiencies following optimal Cas9 nuclease and nickase-based COL7A1-targeting strategies in combination with single- or double-stranded donor templates for HDR at the COL7A1 mutation site. We achieved HDR-mediated correction efficiencies of up to 21% and 10% in primary RDEB keratinocytes and fibroblasts, respectively, as analyzed by next-generation sequencing, leading to full-length type VII collagen restoration and accurate deposition within engineered three-dimensional (3D) skin equivalents (SEs). Extensive on- and off-target analyses confirmed that the combined treatment of paired nicking and single-stranded oligonucleotides constituted a highly efficient COL7A1-editing strategy, associated with a significantly improved safety profile. Our findings, therefore, represent a further advancement in the field of traceless genome editing for genodermatoses.

Int J Mol Sci ; 22(8)2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33918735


Stem cells secrete paracrine factors including extracellular vesicles (EVs) which can mediate cellular communication and support the regeneration of injured tissues. Reduced oxygen (hypoxia) as a key regulator in development and regeneration may influence cellular communication via EVs. We asked whether hypoxic conditioning during human induced pluripotent stem cell (iPSC) culture effects their EV quantity, quality or EV-based angiogenic potential. We produced iPSC-EVs from large-scale culture-conditioned media at 1%, 5% and 18% air oxygen using tangential flow filtration (TFF), with or without subsequent concentration by ultracentrifugation (TUCF). EVs were quantified by tunable resistive pulse sensing (TRPS), characterized according to MISEV2018 guidelines, and analyzed for angiogenic potential. We observed superior EV recovery by TFF compared to TUCF. We confirmed hypoxia efficacy by HIF-1α stabilization and pimonidazole hypoxyprobe. EV quantity did not differ significantly at different oxygen conditions. Significantly elevated angiogenic potential was observed for iPSC-EVs derived from 1% oxygen culture by TFF or TUCF as compared to EVs obtained at higher oxygen or the corresponding EV-depleted soluble factor fractions. Data thus demonstrate that cell-culture oxygen conditions and mode of EV preparation affect iPSC-EV function. We conclude that selecting appropriate protocols will further improve production of particularly potent iPSC-EV-based therapeutics.

Vesículas Extracelulares/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Neovascularização Fisiológica , Transporte Biológico , Biomarcadores , Hipóxia Celular , Autorrenovação Celular , Células Cultivadas , Humanos , Fator 1 Induzível por Hipóxia/metabolismo , Medicina Regenerativa/métodos