Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 563: 145-155, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31874304

RESUMO

HYPOTHESIS: We present a systematic study of the "smart water" induced wettability alteration. This process is believed to be greatly affected by the brine salinity and the presence of Mg2+ and SO42- in the brine. EXPERIMENTS AND MODELLING: To characterize the wettability alteration, we perform spontaneous imbibition measurement using Indiana limestone cores and a model oil with added naphthenic acid. Both single-electrolyte-based and seawater-based "smart water" are tested to investigate the effect of Mg2+, SO42- and salinity on wettability alteration. Rock/brine and oil/brine zeta potentials are measured, and the electrostatic component of disjoining pressure is calculated to understand the role of electrostatics in the wettability alteration. The surface concentration of charged species on the limestone surface is analyzed based on a natural carbonate surface complexation model (SCM). FINDINGS: Both the reduction of Na+ and addition of SO42- are found to contribute to wettability alteration. Mg2+ is found to be unfavorable for wettability alteration. Ca2+ is believed to facilitate SO42- with wettability alteration based on the comparison between the single-electrolyte-based and seawater-based brines. The reduction of the Na+ surface complexation (>CaOH⋯Na+0.25) in low salinity brines is believed to be a critical mechanism responsible for wettability alteration based on the SCM calculations.

2.
J Colloid Interface Sci ; 522: 151-162, 2018 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-29597127

RESUMO

HYPOTHESIS: The viscosity and stability of CO2/water foams at elevated temperature can be increased significantly with highly viscoelastic aqueous lamellae. The slow thinning of these viscoelastic lamellae leads to greater foam stability upon slowing down Ostwald ripening and coalescence. In the aqueous phase, the viscoelasticity may be increased by increasing the surfactant tail length to form more entangled micelles even at high temperatures and salinity. EXPERIMENTS: Systematic measurements of the steady state shear viscosity of aqueous solutions of the diamine surfactant (C16-18N(CH3)C3N(CH3)2) were conducted at varying surfactant concentrations and salinity to determine the parameters for formation of entangled wormlike micelles. The apparent viscosity and stability of CO2/water foams were compared for systems with viscoelastic entangled micellar aqueous phases relative to those with much less viscous spherical micelles. FINDINGS: We demonstrated for the first time stable CO2/water foams at temperatures up to 120 °C and CO2 volumetric fractions up to 0.98 with a single diamine surfactant, C16-18N(CH3)C3N(CH3)2. The foam stability was increased by increasing the packing parameter of the surfactant with a long tail and methyl substitution on the amine to form entangled viscoelastic wormlike micelles in the aqueous phase. The foam was more viscous and stable compared to foams with spherical micelles in the aqueous lamellae as seen with C12-14N(EO)2 and C16-18N(EO)C3N(EO)2.

3.
J Vis Exp ; (131)2018 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-29364222

RESUMO

Microfluidic devices are versatile tools for studying transport processes at a microscopic scale. A demand exists for microfluidic devices that are resistant to low molecular-weight oil components, unlike traditional polydimethylsiloxane (PDMS) devices. Here, we demonstrate a facile method for making a device with this property, and we use the product of this protocol for examining the pore-scale mechanisms by which foam recovers crude oil. A pattern is first designed using computer-aided design (CAD) software and printed on a transparency with a high-resolution printer. This pattern is then transferred to a photoresist via a lithography procedure. PDMS is cast on the pattern, cured in an oven, and removed to obtain a mold. A thiol-ene crosslinking polymer, commonly used as an optical adhesive (OA), is then poured onto the mold and cured under UV light. The PDMS mold is peeled away from the optical adhesive cast. A glass substrate is then prepared, and the two halves of the device are bonded together. Optical adhesive-based devices are more robust than traditional PDMS microfluidic devices. The epoxy structure is resistant to swelling by many organic solvents, which opens new possibilities for experiments involving light organic liquids. Additionally, the surface wettability behavior of these devices is more stable than that of PDMS. The construction of optical adhesive microfluidic devices is simple, yet requires incrementally more effort than the making of PDMS-based devices. Also, though optical adhesive devices are stable in organic liquids, they may exhibit reduced bond-strength after a long time. Optical adhesive microfluidic devices can be made in geometries that act as 2-D micromodels for porous media. These devices are applied in the study of oil displacement to improve our understanding of the pore-scale mechanisms involved in enhanced oil recovery and aquifer remediation.


Assuntos
Óleos Combustíveis , Água Subterrânea/química , Dispositivos Lab-On-A-Chip , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Projeto Auxiliado por Computador , Dimetilpolisiloxanos/química , Porosidade
4.
J Colloid Interface Sci ; 513: 684-692, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29216576

RESUMO

HYPOTHESIS: The adsorption of anionic surfactants onto positively charged carbonate minerals is typically high due to electrostatic interactions. By blending anionic surfactants with cationic or zwitterionic surfactants, which naturally form surfactant complexes, surfactant adsorption is expected to be influenced by a competition between surfactant complexes and surfactant-surface interactions. EXPERIMENTS: The adsorption behavior of surfactant blends known to form complexes was investigated. The surfactants probed include an anionic C15-18 internal olefin sulfonate (IOS), a zwitterionic lauryl betaine (LB), and an anionic C13-alcohol polyethylene glycol ether carboxylic acid (L38). An analytical method based on high-performance liquid chromatography evaporative light scattering detector (HPLC-ELSD) was developed to measure three individual surfactant concentrations from a blended surfactant solution. The adsorption of the individual surfactants and surfactant blends were systematically investigated on different mineral surfaces using varying brine solutions. FINDINGS: LB adsorption on calcite surfaces was found to be significantly increased when blended with IOS or L38 since it forms surfactant complexes that partition to the surface. However, the total adsorption of the LB-IOS-L38 solution on dolomite decreased from 3.09 mg/m2 to 1.97 mg/m2 when blended together compared to summing the adsorption values of individual surfactants, which highlights the importance of mixed surfactant association.

5.
Langmuir ; 34(3): 739-749, 2018 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-29045144

RESUMO

Foam flooding in porous media is of increasing interest due to its numerous applications such as enhanced oil recovery, aquifer remediation, and hydraulic fracturing. However, the mechanisms of oil-foam interactions have yet to be fully understood at the pore level. Here, we present three characteristic zones identified in experiments involving the displacement of crude oil from model porous media via surfactant-stabilized foam, and we describe a series of pore-level dynamics in these zones which were not observed in experiments involving paraffin oil. In the displacement front zone, foam coalesces upon initial contact with crude oil, which is known to destabilize the liquid lamellae of the foam. Directly upstream, a transition zone occurs where surface wettability is altered from oil-wet to water-wet. After this transition takes place, a strong foam bank zone exists where foam is generated within the porous media. We visualized each zone using a microfluidic platform, and we discuss the unique physicochemical phenomena that define each zone. In our analysis, we also provide an updated mechanistic understanding of the "smart rheology" of foam which builds upon simple "phase separation" observations in the literature.

6.
J Colloid Interface Sci ; 506: 169-179, 2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-28735190

RESUMO

This study presents experiment and surface complexation modeling (SCM) of synthetic calcite zeta potential in brine with mixed potential determining ions (PDI) under various CO2 partial pressures. Such SCM, based on systematic zeta potential measurement in mixed brines (Mg2+, SO42-, Ca2+ and CO32-), is currently not available in the literature and is expected to facilitate understanding of the role of electrostatic forces in calcite wettability alteration. We first use a double layer SCM to model experimental zeta potential measurements and then systematically analyze the contribution of charged surface species. Calcite surface charge is investigated as a function of four PDIs and CO2 partial pressure. We show that our model can accurately predict calcite zeta potential in brine containing a combination of four PDIs and apply it to predict zeta potential in ultra-low and pressurized CO2 environments for potential application in enhanced oil recovery in carbonate reservoirs. Model prediction reveals that calcite surface will be positively charged in all considered brines in pressurized CO2 environment (>1atm). The calcite zeta potential is sensitive to CO2 partial pressure in the various brine in the order of Na2CO3>Na2SO4>NaCl>MgCl2>CaCl2 (Ionic strength=0.1M).

7.
Langmuir ; 32(25): 6239-45, 2016 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-27244300

RESUMO

We present the results of an experimental investigation of the effect of gas type and composition on foam transport in porous media. Steady-state foam strengths with respect to three cases of distinct gases and two cases containing binary mixtures of these gases were compared. The effects of gas solubility, the stability of lamellae, and the gas diffusion rate across the lamellae were examined. Our experimental results showed that the steady-state foam strength is inversely correlated with the gas permeability across a liquid lamella, a parameter that characterizes the rate of mass transport. The results are also in good agreement with existing observations that the foam strength for a mixture of gases is correlated with the less soluble component. Three hypotheses with different predictions of the underlying mechanism that explain the role of gas type and composition in foam strength are discussed in detail.

8.
J Colloid Interface Sci ; 470: 80-91, 2016 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-26930543

RESUMO

The interfacial properties for surfactants at the supercritical CO2-water (C-W) interface at temperatures above 80°C have very rarely been reported given limitations in surfactant solubility and chemical stability. These limitations, along with the weak solvent strength of CO2, make it challenging to design surfactants that adsorb at the C-W interface, despite the interest in CO2-in-water (C/W) foams (also referred to as macroemulsions). Herein, we examine the thermodynamic, interfacial and rheological properties of the surfactant C12-14N(EO)2 in systems containing brine and/or supercritical CO2 at elevated temperatures and pressures. Because the surfactant is switchable from the nonionic state to the protonated cationic state as the pH is lowered over a wide range in temperature, it is readily soluble in brine in the cationic state below pH 5.5, even up to 120°C, and also in supercritical CO2 in the nonionic state. As a consequence of the affinity for both phases, the surfactant adsorption at the CO2-water interface was high, with an area of 207Å(2)/molecule. Remarkably, the surfactant lowered the interfacial tension (IFT) down to ∼5mN/m at 120°C and 3400 psia (23MPa), despite the low CO2 density of 0.48g/ml, indicating sufficient solvation of the surfactant tails. The phase behavior and interfacial properties of the surfactant in the cationic form were favorable for the formation and stabilization of bulk C/W foam at high temperature and high salinity. Additionally, in a 1.2 Darcy glass bead pack at 120°C, a very high foam apparent viscosity of 146 cP was observed at low interstitial velocities given the low degree of shear thinning. For a calcium carbonate pack, C/W foam was formed upon addition of Ca(2+) and Mg(2+) in the feed brine to keep the pH below 4, by the common ion effect, in order to sufficiently protonate the surfactant. The ability to form C/W foams at high temperatures is of interest for a variety of applications in chemical synthesis, separations, materials science, and subsurface energy production.

9.
Biomed Microdevices ; 17(6): 109, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26494637

RESUMO

Injuries that result in the loss of limb functionality may be caused by the severing of the peripheral nerves within the affected limb. Several bioengineered peripheral nerve scaffolds have been developed in order to provide the physical support and topographical guidance necessary for the naturally disorganized axon outgrowth to reattach to distal nerve stumps as an alternative to other procedures, like nerve grafting. PDMS has been chosen for the base material of the scaffolds due to its biocompatibility, flexibility, transparency, and well-developed fabrication techniques. The process of observing the axon outgrowth across the nerve gaps with PDMS scaffolds has been challenging due to the limited number and fineness of longitudinal sections that can be extracted from harvested nerve tissue samples after implantation. To address this, multilayer microchannel scaffolds were developed with the object of providing more refined longitudinal observation of axon outgrowth by longitudinally 'sectioning' the device during fabrication, removing the need for much of the sample preparation process. This device was then implanted into the sciatic nerves of Lewis rats, and then harvested after two and four weeks to analyze the difference in nerve regeneration between two different time periods. The present layer by layer structure, which is separable after nerve regeneration and is treated as an individual layer during the histology process, provides the details of biological events during axonal regeneration. Confocal microscopic imaging showed the details of peripheral nerve regeneration including nerve branches and growth cones observable from within the microchannels of the multilayer PDMS microchannel scaffolds.


Assuntos
Dimetilpolisiloxanos/química , Regeneração Nervosa , Nervo Isquiático/crescimento & desenvolvimento , Engenharia Tecidual/métodos , Tecidos Suporte/química , Animais , Desenho de Equipamento , Tecido Nervoso/crescimento & desenvolvimento , Ratos , Ratos Endogâmicos Lew
10.
Anal Chem ; 86(22): 11055-61, 2014 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-25365626

RESUMO

The methylene blue (MB) two-phase titration method is a rapid and efficient method for determining the concentrations of anionic surfactants. The point at which the aqueous and chloroform phases appear equally blue is called Epton's end point. However, many inorganic anions, e.g., Cl(-), NO3(-), Br(-), and I(-), can form ion pairs with MB(+) and interfere with Epton's end point, resulting in the failure of the MB two-phase titration in high-salinity brine. Here we present a method to extend the MB two-phase titration method for determining the concentration of various cationic surfactants in both deionized water and high-salinity brine (22% total dissolved solid). A colorless end point, at which the blue color is completely transferred from the aqueous phase to the chloroform phase, is proposed as titration end point. Light absorbance at the characteristic wavelength of MB is measured using a spectrophotometer. When the absorbance falls below a threshold value of 0.04, the aqueous phase is considered colorless, indicating that the end point has been reached. By using this improved method, the overall error for the titration of a permanent cationic surfactant, e.g., dodecyltrimethylammonium bromide, in deionized (DI) water and high-salinity brine is 1.274% and 1.322% with limits of detection (LOD) of 0.149 and 0.215 mM, respectively. Compared to the traditional acid-base titration method, the error of this improved method for a switchable cationic surfactant, e.g., tertiary amine surfactant (Ethomeen C12), is 2.22% in DI water and 0.106% with LOD of 0.369 and 0.439 mM, respectively.

11.
Langmuir ; 30(15): 4236-42, 2014 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-24684587

RESUMO

Controlling the morphology of conjugated polymers has recently attracted considerable attention because of their applications in photovoltaic (PV) devices and organic light-emitting diodes (OLEDs). Here, we describe the self-assembly of a common conjugated polymer, poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV), into ringlike structures via solvent evaporation on an air/water interface. The films are monitored using Brewster angle microscopy (BAM) and transferred onto a solid substrate by either the Langmuir-Blodgett (LB) or the Langmuir-Schaefer (LS) method and further characterized by atomic force microscopy (AFM). The morphology of the MEH-PPV thin film at the air/water interface can be controlled by the spreading solvent. By mixing solvents of varying spreading coefficients and evaporation rates, such as chloroform and chlorobenzene, MEH-PPV can be assembled into micrometer-sized ring structures. The optical properties of these MEH-PPV ring structures are also characterized. Lastly, MEH-PPV can be used as a soft template to organize microscale structures of nanoparticles.

12.
J Colloid Interface Sci ; 378(1): 58-63, 2012 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-22575780

RESUMO

Surfactants have been widely used as templating agents to pattern the orientation of nanoparticles of various conformations. Here we report the use of a lipid, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), as a template to order CdSe tetrapods (TPs) at the air/water interface using a Langmuir-Blodgett trough. The surface pressure versus area isotherms for CdSe TPs and CdSe TPs/POPC are examined and monitored by Brewster angle microscopy (BAM). The transferred thin films are further characterized by transmission electron microscopy (TEM) and atomic force microscopy (AFM). Initially disc-like structures containing randomly oriented TPs form during solvent evaporation. Upon decreasing surface area, these discs merge into larger continental structures. In a mixed CdSe TPs/POPC system, these discs organize into wire-like networks upon compression. We detail how lipid molecules can be used to direct the two-dimensional assembly of TPs.


Assuntos
Compostos de Cádmio/química , Nanopartículas/química , Transição de Fase , Fosfatidilcolinas/química , Compostos de Selênio/química , Tamanho da Partícula , Pressão
13.
Langmuir ; 27(8): 4900-5, 2011 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-21410208

RESUMO

Lactose repressor protein (LacI) functions as a negative transcription regulator in Escherichia coli by binding to the operator DNA sequence. Our understanding of the immobilized LacI function and the effect of ligand binding on the conformation of LacI-DNA complexes remains poorly understood. Here, we have examined the difference in functionality of wild-type and mutant LacI binding to the target DNA using quartz crystal microbalance with dissipation (QCM-D). To direct the orientation of LacI binding to the gold surface, residue 334 was substituted with cysteine (T334C) to generate a sulfur-gold linkage. Position 334 is located on the surface opposite the DNA-binding domain and remote from the site for inducer binding. With T334C immobilized on the gold surface, our sensors successfully detect operator binding as well as the release of the operator DNA from the repressor in the presence of inducer isopropyl-ß-D-thiogalactoside (IPTG). Besides the natural operator DNA sequence (O(1)), a symmetric high-affinity DNA sequence (O(sym)), and a non-specific DNA (O(ns)) sequence with low affinity were also used. In addition, the impact of anti-inducer o-nitrophenyl-beta-d-fucoside (ONPF), which stabilizes LacI operator binding, was examined. The results from immobilized mutant LacI are in good agreement with known solution parameters for LacI-ligand interactions, demonstrating that QCM-D provides a rapid and efficient measurement of DNA binding and impact of ligands upon binding for this complex oligomeric protein.


Assuntos
DNA Bacteriano/metabolismo , Proteínas de Escherichia coli/metabolismo , Repressores Lac/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Imobilizadas/metabolismo , Ligação Proteica , Técnicas de Microbalança de Cristal de Quartzo
14.
Biomed Microdevices ; 12(5): 855-63, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20574820

RESUMO

It has been demonstrated that a chimeric antigen receptor (CAR) can directly recognize the CD19 molecule expressed on the cell surface of B-cell malignancies independent of major histocompatibility complex (MHC). Although T-cell therapy of tumors using CD19-specific CAR is promising, this approach relies on using expression vectors that stably integrate the CAR into T-cell chromosomes. To circumvent the potential genotoxicity that may occur from expressing integrating transgenes, we have expressed the CD19-specific CAR transgene from mRNA using a high throughput microelectroporation device. This research was accomplished using a microelectroporator to achieve efficient and high throughput non-viral gene transfer of in vitro transcribed CAR mRNA into human T cells that had been numerically expanded ex vivo. Electro-transfer of mRNA avoids the potential genotoxicity associated with vector and transgene integration and the high throughput capacity overcomes the expected transient CAR expression, as repeated rounds of electroporation can replace T cells that have lost transgene expression. We fabricated and tested a high throughput microelectroporator that can electroporate a stream of 2 x 10(8) primary T cells within 10 min. After electroporation, up to 80% of the passaged T cells expressed the CD19-specific CAR. Video time-lapse microscopy (VTLM) demonstrated the redirected effector function of the genetically manipulated T cells to specifically lyse CD19+ tumor cells. Our biomedical microdevice, in which T cells are transiently and safely modified to be tumor-specific and then can be re-infused, offers a method for redirecting T-cell specificity, that has implications for the development of adoptive immunotherapy.


Assuntos
Eletroporação/instrumentação , Receptores de Antígenos/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Linfócitos T/imunologia , Células Apresentadoras de Antígenos/citologia , Células Apresentadoras de Antígenos/imunologia , Antígenos CD19/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Humanos , RNA Mensageiro/genética , Receptores de Antígenos/genética , Receptores de Antígenos/imunologia , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Linfócitos T/citologia
15.
Langmuir ; 25(16): 8944-50, 2009 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-19588954

RESUMO

The self-assembly of colloidal particles using DNA linker molecules has led to novel colloidal materials. This article describes the development and characterization of a new class of colloidal structures based on the directed assembly of DNA-linked paramagnetic particles. A key obstacle to assembling these structures is understanding the fundamental chemistry and physics of the assembly processes. The stability of these cross-linked chain structures is the first step toward reliable assembly and thus important for its applications; however, chain stability has yet to be systematically studied. In this paper, we investigate both theoretically and experimentally, the stability of DNA-linked paramagnetic colloidal chains as a function of externally applied magnetic field strength and surface grafted DNA length and density. A total interparticle free energy potential model is developed accounting for all major forces contributing to chain stability, and a phase diagram is obtained from experiments to illustrate linked chain phases, unstable unlinked particle phases, and their transitions, which agree well with those predicted by the model. From this study, optimized parameters for successful linking and building stable linked chains are obtained.


Assuntos
Coloides/química , DNA/química , Magnetismo , Algoritmos , Sequência de Bases , Dados de Sequência Molecular , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA