Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 59(5): 587-590, 2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36524690

RESUMO

Staphylococcus aureus uses small peptides to assess its population densisty (i.e., quorum sensing) and regulate virulence at high cell number. Here, we report the design and synthesis of peptidomimetics based on these native signals that strongly block this communication pathway in all four specificity groups of S. aureus.


Assuntos
Peptidomiméticos , Infecções Estafilocócicas , Humanos , Staphylococcus aureus/fisiologia , Peptidomiméticos/farmacologia , Peptidomiméticos/metabolismo , Percepção de Quorum , Proteínas de Bactérias/metabolismo , Peptídeos/metabolismo
2.
Langmuir ; 39(1): 295-307, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36534123

RESUMO

We report the influence of membrane composition on the multiscale remodeling of multicomponent lipid bilayers initiated by contact with the amphiphilic bacterial quorum sensing signal N-(3-oxo)-dodecanoyl-l-homoserine lactone (3-oxo-C12-AHL) and its anionic headgroup hydrolysis product, 3-oxo-C12-HS. We used fluorescence microscopy and quartz crystal microbalance with dissipation (QCM-D) to characterize membrane reformation that occurs when these amphiphiles are placed in contact with supported lipid bilayers (SLBs) composed of (i) 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) containing varying amounts of cholesterol or (ii) mixtures of DOPC and either 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE, a conical zwitterionic lipid) or 1,2-dioleoyl-sn-glycero-3-phospho-l-serine (DOPS, a model anionic lipid). In general, we observe these mixed-lipid membranes to undergo remodeling events, including the formation and subsequent collapse of long tubules and the formation of hemispherical caps, upon introduction to biologically relevant concentrations of 3-oxo-C12-AHL and 3-oxo-C12-HS in ways that differ substantially from those observed in single-component DOPC membranes. These differences in bilayer reformation and their associated dynamics can be understood in terms of the influence of membrane composition on the time scales of molecular flip-flop, lipid packing defects, and lipid phase segregation in these materials. The lipid components investigated here are representative of classes of lipids that comprise both naturally occurring cell membranes and many useful synthetic soft materials. These studies thus represent a first step toward understanding the ways in which membrane composition can impact interactions with this important class of bacterial signaling molecules.


Assuntos
Bicamadas Lipídicas , Percepção de Quorum , Bicamadas Lipídicas/química , Membrana Celular/metabolismo , Membranas/metabolismo , Microscopia de Fluorescência , Fosfatidilcolinas/química
3.
ACS Chem Biol ; 17(11): 2979-2985, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36239990

RESUMO

Quorum sensing (QS) allows bacteria to assess their local cell density using chemical signals and plays a prominent role in the ability of common pathogens to infect a host. Non-native molecules capable of attenuating bacterial QS represent useful tools to explore the role of this pathway in virulence. As individual bacterial species can have multiple QS systems and/or reside in mixed communities with other bacteria capable of QS, chemical tools that are either selective for one QS system or "pan-active" and target all QS pathways are of significant interest. Herein we outline the analysis of a set of compounds reported to target one QS system in Pseudomonas aeruginosa for their activity in two other QS circuits in this pathogen and the discovery of molecules with novel activity profiles, including subsets that agonize all three QS systems, agonize one but antagonize the other two, or strongly antagonize just one.


Assuntos
Pseudomonas aeruginosa , Percepção de Quorum , Percepção de Quorum/fisiologia , Pseudomonas aeruginosa/metabolismo , Transativadores/metabolismo , Proteínas Repressoras/química , Proteínas de Bactérias/metabolismo
4.
Nat Chem Biol ; 18(10): 1115-1124, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35927585

RESUMO

Cell-to-cell signaling, or quorum sensing (QS), in many Gram-negative bacteria is governed by small molecule signals (N-acyl-L-homoserine lactones, AHLs) and their cognate receptors (LuxR-type proteins). The mechanistic underpinnings of QS in these bacteria are severely limited due to the challenges of isolating and manipulating most LuxR-type proteins. Reports of quantitative direct-binding experiments on LuxR-type proteins are scarce, and robust and generalizable methods that provide such data are largely nonexistent. We report herein a Förster resonance energy transfer (FRET) assay that leverages (1) conserved tryptophans located in the LuxR-type protein ligand-binding site and synthetic fluorophore-AHL conjugates, and (2) isolation of the proteins bound to weak agonists. The FRET assay permits straightforward measurement of ligand-binding affinities with receptor-either in vitro or in cells-and was shown to be compatible with six LuxR-type proteins. These methods will advance fundamental investigations of LuxR-type protein mechanism and the development of small molecule QS modulators.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Transativadores , Acil-Butirolactonas/química , Acil-Butirolactonas/metabolismo , Proteínas de Bactérias/metabolismo , Homosserina , Ligantes , Percepção de Quorum , Proteínas Repressoras/metabolismo , Transativadores/metabolismo
5.
ACS Appl Mater Interfaces ; 14(15): 17940-17949, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35394750

RESUMO

We report the design of slippery liquid-infused porous surfaces (SLIPS) fabricated from building blocks that are biodegradable, edible, or generally regarded to be biocompatible. Our approach involves infusion of lubricating oils, including food oils, into nanofiber-based mats fabricated by electrospinning or blow spinning of poly(ε-caprolactone), a hydrophobic biodegradable polymer used widely in medical implants and drug delivery devices. This approach leads to durable and biodegradable SLIPS that prevent fouling by liquids and other materials, including microbial pathogens, on objects of arbitrary shape, size, and topography. This degradable polymer approach also provides practical means to design "controlled-release" SLIPS that release molecular cargo at rates that can be manipulated by the properties of the infused oils (e.g., viscosity or chemical structure). Together, our results provide new designs and introduce useful properties and behaviors to antifouling SLIPS, address important issues related to biocompatibility and environmental persistence, and thus advance new potential applications, including the use of slippery materials for food packaging, industrial and marine coatings, and biomedical implants.


Assuntos
Incrustação Biológica , Polímeros , Incrustação Biológica/prevenção & controle , Excipientes , Lubrificantes , Óleos de Plantas , Polímeros/química , Porosidade
6.
Angew Chem Int Ed Engl ; : e202201798, 2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35334139

RESUMO

A synthetic peptide was found to block cell-to-cell signalling, or quorum sensing, in bacteria and be highly bioavailable in mouse tissue. The controlled release of this agent from degradable polymeric microparticles strongly inhibited skin infection in a wound model at levels that far surpassed the potency of the peptide when delivered conventionally.

7.
Cell Chem Biol ; 29(4): 605-614.e4, 2022 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-34932995

RESUMO

Strategies to both monitor and block bacterial quorum sensing (QS), and thus associated infections, are of significant interest. We developed a straightforward assay to monitor biosurfactants and lytic agents produced by bacteria under the control of QS. The method is based on the lysis of synthetic lipid vesicles containing the environmentally sensitive fluorescent dye calcein. This assay allows for the in situ screening of compounds capable of altering biosurfactant production by bacteria, and thereby the identification of molecules that could potentially modulate QS pathways, and avoids the constraints of many of the cell-based assays in use today. Application of this assay in a high-throughput format revealed five molecules capable of blocking vesicle lysis by S. aureus. Two of these compounds were found to almost completely inhibit agr-based QS in S. aureus and represent the most potent small-molecule-derived QS inhibitors reported in this formidable pathogen.


Assuntos
Percepção de Quorum , Staphylococcus aureus , Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Lipídeos , Pseudomonas aeruginosa/metabolismo , Staphylococcus aureus/metabolismo
8.
ACS Appl Mater Interfaces ; 13(46): 55621-55632, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34775755

RESUMO

We report a layer-by-layer suction-and-flow approach that enables the fabrication of polymer-based "slippery" liquid-infused porous surfaces (SLIPS) in the confined luminal spaces of flexible, narrow-bore tubing. These SLIPS-coated tubes can prevent or strongly reduce surface fouling after prolonged contact, storage, or flow of a broad range of complex fluids and viscoelastic materials, including many that are relevant in the contexts of medical devices (e.g., blood and urine), food processing (beverages and fluids), and other commercial and industrial applications. The robust and mechanically compliant nature of the nanoporous coating used to host the lubricating oil phase allows these coated tubes to be bent, flexed, and coiled repeatedly without affecting their inherent slippery and antifouling behaviors. Our results also show that SLIPS-coated tubes can prevent the formation of bacterial biofilms after prolonged and repeated flow-based exposure to the human pathogen Staphylococcus aureus and that the anti-biofouling properties of these coated tubes can be further improved or prolonged by coupling this approach with strategies that permit the sustained release of broad-spectrum antimicrobial agents. The suction-and-flow approach used here enables the application of slippery coatings in the confined luminal spaces of narrow-bore tubing that are difficult to access using several other methods for the fabrication of liquid-infused coatings and can be applied to tubing of arbitrary length and diameter. We anticipate that the materials and approaches reported here will prove useful for reducing or preventing biofouling, process fouling, and the clogging or occlusion of tubing in a wide range of consumer, industrial, and healthcare-oriented applications.

9.
Chem Commun (Camb) ; 57(94): 12691-12694, 2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34781330

RESUMO

We report the design of 'slippery' nanoemulsion-infused porous surfaces (SNIPS). These materials are strongly anti-fouling to a broad range of substances, including microorganisms. Infusion with water-in-oil nanoemulsions also endows these slippery coatings with the ability to host and control or sustain the release of water-soluble agents, including polymers, peptides, and nucleic acids, opening the door to new applications of liquid-infused materials.


Assuntos
DNA/química , Nanopartículas/química , Peptídeos/química , Polímeros/química , RNA/química , Incrustação Biológica/prevenção & controle , Emulsões , Tamanho da Partícula , Porosidade , Solubilidade , Propriedades de Superfície , Água/química
10.
Langmuir ; 37(30): 9120-9136, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34283628

RESUMO

We report that N-acyl-l-homoserine lactones (AHLs), a class of nonionic amphiphiles that common bacteria use as signals to coordinate group behaviors, can promote large-scale remodeling in model lipid membranes. Characterization of supported lipid bilayers (SLBs) of the phospholipid 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) by fluorescence microscopy and quartz crystal microbalance with dissipation (QCM-D) reveals the well-studied AHL signal 3-oxo-C12-AHL and its anionic head group hydrolysis product (3-oxo-C12-HS) to promote the formation of long microtubules that can retract into hemispherical caps on the surface of the bilayer. These transformations are dynamic, reversible, and dependent upon the head group structure. Additional experiments demonstrate that 3-oxo-C12-AHL can promote remodeling to form microtubules in lipid vesicles and promote molecular transport across bilayers. Molecular dynamics (MD) simulations predict differences in thermodynamic barriers to translocation of these amphiphiles across a bilayer that are reflected in both the type and extent of reformation and associated dynamics. Our experimental observations can thus be interpreted in terms of accumulation and relief of asymmetric stresses in the inner and outer leaflets of a bilayer upon intercalation and translocation of these amphiphiles. Finally, experiments on Pseudomonas aeruginosa, a pathogen that uses 3-oxo-C12-AHL for cell-to-cell signaling, demonstrate that 3-oxo-C12-AHL and 3-oxo-C12-HS can promote membrane remodeling at biologically relevant concentrations and in the absence of other biosurfactants, such as rhamnolipids, that are produced at high population densities. Overall, these results have implications for the roles that 3-oxo-C12-AHL and its hydrolysis product may play in not only mediating intraspecies bacterial communication but also processes such as interspecies signaling and bacterial control of host-cell response. Our findings also provide guidance that could prove useful for the design of synthetic self-assembled materials that respond to bacteria in ways that are useful in the context of sensing, drug delivery, and in other fundamental and applied areas.


Assuntos
Pseudomonas aeruginosa , Percepção de Quorum , Bactérias , Comunicação Celular , Transdução de Sinais
11.
ACS Appl Mater Interfaces ; 13(28): 33652-33663, 2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34236833

RESUMO

We report the design and characterization of liquid crystal (LC)-infused porous polymer membranes that can detect and report on the presence of natural and synthetic amphiphiles in aqueous solution. We demonstrate that thermotropic LCs can be infused into nanoporous polymer membranes to yield LC-infused surfaces that exhibit slippery behaviors in contact with a range of aqueous fluids. In contrast to conventional liquid-infused surfaces (LIS) or slippery liquid-infused porous surfaces (SLIPS) prepared using isotropic oils, aqueous solutions slide over the surfaces of these LC-infused materials at speeds that depend strongly upon the composition of the fluid, including the presence, concentration, or structure of a dissolved surfactant. In general, the sliding times of aqueous droplets on these LC-infused surfaces increase significantly (e.g., from times on the order of seconds to times on the order of minutes) with increasing amphiphile concentration, allowing sliding times to be used to estimate the concentration of the amphiphile. Additional experiments revealed other intrinsic and extrinsic variables or parameters that can be used to further manipulate droplet sliding times and discriminate among amphiphiles of similar structure. Our results are consistent with a physical picture that involves reversible changes in the interfacial orientation of anisotropic LCs mediated by the interfacial adsorption of amphiphiles. These materials thus permit facile "naked-eye" detection and discrimination of amphiphiles in aqueous samples using equipment no more sophisticated than a stopwatch. We demonstrate the potential utility of these LC-infused surfaces for the unaided, naked-eye detection and monitoring of amphiphilic biotoxins in small droplets of fluid extracted directly from cultures of two common bacterial pathogens (Pseudomonas aeruginosa and Staphylococcus aureus). The ability to translate molecular interactions at aqueous/LC interfaces into large and readily observed changes in the sliding times of small aqueous droplets on surfaces could open the door to new applications for antifouling, liquid-infused materials in the context of environmental sensing and other fundamental and applied areas.


Assuntos
Toxinas Bacterianas/análise , Cristais Líquidos/química , Polímeros/química , Tensoativos/análise , Adsorção , Toxinas Bacterianas/química , Técnicas de Química Analítica/métodos , Politetrafluoretileno/química , Porosidade , Estudo de Prova de Conceito , Pseudomonas aeruginosa/química , Staphylococcus aureus/química , Tensoativos/química
12.
ACS Chem Biol ; 16(6): 1070-1078, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-33988969

RESUMO

Staphylococcus epidermidis is a leading cause of hospital-acquired infections. Traditional antibiotics have significantly reduced efficacy against this pathogen due to its ability to form biofilms on abiotic surfaces and drug resistance. The accessory gene regulator (agr) quorum sensing system is directly involved in S. epidermidis pathogenesis. Activation of agr is achieved via binding of the autoinducing peptide (AIP) signal to the extracellular sensor domain of its cognate receptor, AgrC. Divergent evolution has given rise to four agr specificity groups in S. epidermidis defined by the unique AIP sequence used by each group (AIPs-I-IV) with observed cross-group activities. As agr agonism has been shown to reduce biofilm growth in S. epidermidis, the development of pan-group activators of the agr system is of interest as a potential antivirulence strategy. To date, no synthetic compounds have been identified that are capable of appreciably activating the agr system of more than one specificity group of S. epidermidis or, to our knowledge, of any of the other Staphylococci. Here, we report the characterization of the structure-activity relationships for agr agonism by S. epidermidis AIP-II and AIP-III and the application of these new SAR data and those previously reported for AIP-I for the design and synthesis of the first multigroup agr agonists. These non-native peptides were capable of inducing the expression of critical biofilm dispersal agents (i.e., phenol-soluble modulins) in cell culture and represent new tools to study the role of quorum sensing in S. epidermidis infections.


Assuntos
Antibacterianos/farmacologia , Peptídeos/farmacologia , Percepção de Quorum/efeitos dos fármacos , Staphylococcus epidermidis/efeitos dos fármacos , Antibacterianos/química , Biofilmes/efeitos dos fármacos , Humanos , Modelos Moleculares , Peptídeos/química , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Staphylococcus epidermidis/fisiologia
13.
Langmuir ; 37(41): 12049-12058, 2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34606725

RESUMO

Many common bacteria use amphiphilic N-acyl-L-homoserine lactones (AHLs) as signaling molecules to coordinate group behaviors at high cell densities. Past studies demonstrate that AHLs can adsorb to and promote the remodeling of lipid membranes in ways that could underpin cell-cell or host-cell interactions. Here, we report that changes in AHL acyl tail group length and oxidation state (e.g., the presence or absence of a 3-oxo group) can lead to differences in the interactions of eight naturally occurring AHLs in solution and in contact with model lipid membranes. Our results reveal that the presence of a 3-oxo group impacts remodeling when AHLs are placed in contact with supported lipid bilayers (SLBs) of the phospholipid 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC). Whereas AHLs that have 3-oxo groups generally promote the formation of microtubules, AHLs that lack 3-oxo groups generally form hemispherical caps on the surfaces of SLBs. These results are interpreted in terms of the time scales on which AHLs translocate across bilayers to relieve asymmetrical bilayer stress. Quartz crystal microbalance with dissipation measurements also reveal that 3-oxo AHLs associate with DOPC bilayers to a greater extent than their non-3-oxo analogues. In contrast, we observed no monotonic relationship between AHL tail length and bilayer reformation. Finally, we observed that 3-oxo AHLs facilitate greater transport or leakage of molecular cargo across the membranes of DOPC vesicles relative to AHLs without 3-oxo groups, also suggesting increased bilayer disruption and destabilization. These fundamental studies hint at interactions and associated multiscale phenomena that may inform current interpretations of the behaviors of AHLs in biological contexts. These results could also provide guidance useful for the design of new classes of synthetic materials (e.g., sensor elements or drug delivery vehicles) that interact with or respond selectively to communities of bacteria that use 3-oxo AHLs for cell-cell communication.


Assuntos
Acil-Butirolactonas , Percepção de Quorum , Bactérias , Comunicação Celular , Lipídeos
14.
ACS Infect Dis ; 6(12): 3092-3103, 2020 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-33124430

RESUMO

Enterohemorrhagic Escherichia coli (EHEC) is the causative agent of severe diarrheal disease in humans. Cattle are the natural reservoir of EHEC, and approximately 75% of EHEC infections in humans stem from bovine products. Many common bacterial pathogens, including EHEC, rely on chemical communication systems, such as quorum sensing (QS), to regulate virulence and facilitate host colonization. EHEC uses SdiA from E. coli (SdiAEC), an orphan LuxR-type receptor, to sense N-acyl l-homoserine lactone (AHL) QS signals produced by other members of the bovine enteric microbiome. SdiAEC regulates two phenotypes critical for colonizing cattle: acid resistance and the formation of attaching and effacing lesions. Despite the importance of SdiAEC, there is very little known about its selectivity for different AHL signals, and no chemical inhibitors that act specifically on SdiAEC have been reported. Such compounds would represent valuable tools to study the roles of QS in EHEC virulence. To identify chemical modulators of SdiAEC and delineate the structure-activity relationships (SARs) for AHL activity in this receptor, we report herein the screening of a focused library composed largely of AHLs and AHL analogues in an SdiAEC reporter assay. We describe the identity and SARs of potent modulators of SdiAEC activity, examine the promiscuity of SdiAEC, characterize the mechanism of a covalent inhibitor, and provide phenotypic assay data to support that these compounds can control SdiAEC-dependent acid resistance in E. coli. These SdiAEC modulators could be used to advance the study of LuxR-type receptor/ligand interactions, the biological roles of orphan LuxR-type receptors, and potential QS-based therapeutic approaches.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Percepção de Quorum , Acil-Butirolactonas , Animais , Bovinos , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Transativadores
15.
ACS Appl Mater Interfaces ; 12(26): 29056-29065, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32484648

RESUMO

We report aqueous emulsions of thermotropic liquid crystals (LCs) that can intercept and report on the presence of N-acyl-l-homoserine lactones (AHLs), a class of amphiphiles used by pathogenic bacteria to regulate quorum sensing (QS), monitor population densities, and initiate group activities, including biofilm formation and virulence factor production. The concentration of AHL required to promote "bipolar" to "radial" transitions in micrometer-scale droplets of the nematic LC 4'-pentyl-cyanobiphenyl (5CB) decreases with increasing carbon number in the acyl tail, reaching a threshold concentration of 7.1 µM for 3-oxo-C12-AHL, a native QS signal in the pathogen Pseudomonas aeruginosa. The LC droplets in these emulsions also respond to biologically relevant concentrations of the biosurfactant rhamnolipid, a virulence factor produced by communities of P. aeruginosa under the control of QS. Systematic studies using bacterial mutants support the conclusion that these emulsions respond selectively to the production of rhamnolipid and AHLs and not to other products produced by bacteria at lower (subquorate) population densities. Finally, these emulsions remain configurationally stable in growth media, enabling them to be deployed either in bacterial supernatants or in situ in bacterial cultures to eavesdrop on QS and report on changes in bacterial group behavior that can be detected in real time using polarized light. Our results provide new tools to detect and report on bacterial QS and virulence and a materials platform for the rapid and in situ monitoring of bacterial communication and resulting group behaviors in bacterial communities.


Assuntos
Emulsões/química , Cristais Líquidos/química , Acil-Butirolactonas/química , Glicolipídeos/química , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/patogenicidade , Pseudomonas aeruginosa/fisiologia , Percepção de Quorum/fisiologia , Virulência , Fatores de Virulência/metabolismo
17.
J Phys Chem B ; 124(18): 3616-3628, 2020 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-32271573

RESUMO

Many species of common bacteria communicate and coordinate group behaviors, including toxin production and surface fouling, through a process known as quorum sensing (QS). In Gram-negative bacteria, QS is regulated by N-acyl-l-homoserine lactones (AHLs) that possess a polar homoserine lactone headgroup and a nonpolar aliphatic tail. Past studies demonstrate that AHLs can aggregate in water or adsorb at interfaces, suggesting that molecular self-assembly could play a role in processes that govern bacterial communication. We used a combination of biophysical characterization and atomistic molecular dynamics (MD) simulations to characterize the self-assembly behaviors of 12 structurally related AHLs. We used static light scattering and measurements of surface tension to characterize the assembly of four naturally occurring AHLs (3-oxo-C8-AHL, 3-oxo-C12-AHL, C12-AHL, and C16-AHL) in aqueous media and determine their critical aggregation concentrations (CACs). MD simulations and alchemical free energy calculations were used to predict thermodynamically preferred aggregate structures for each AHL. Those calculations predicted that AHLs with 10 or 12 tail carbon atoms should form spherical micelles and that AHLs with 14 or 16 tail carbon atoms should form vesicles in solution. Characterization of solutions of AHLs using negative stain transmission electron microscopy (TEM) and dynamic light scattering (DLS) revealed aggregates with sizes consistent with spherical micelles or small unilamellar vesicles for 3-oxo-C12-AHL and C12-AHL and the formation of large vesicles (∼250 nm) in solutions of C16-AHL. These experimental findings are in general agreement with our simulation predictions. Overall, our results provide insight into processes of self-assembly that can occur in this class of bacterial amphiphiles and, more broadly, provide a potential basis for understanding how AHL structure could influence processes that bacteria use to drive important group behaviors.


Assuntos
Micelas , Percepção de Quorum , Acil-Butirolactonas , Simulação de Dinâmica Molecular , Água
18.
ACS Infect Dis ; 6(4): 649-661, 2020 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-32037806

RESUMO

Quorum sensing (QS), a bacterial cell-to-cell communication system mediated by small molecules and peptides, has received significant interest as a potential target to block infection. The common pathogen Pseudomonas aeruginosa uses QS to regulate many of its virulence phenotypes at high cell densities, and the LasR QS receptor plays a critical role in this process. Small molecule tools that inhibit LasR activity would serve to illuminate its role in P. aeruginosa virulence, but we currently lack highly potent and selective LasR antagonists, despite considerable research in this area. V-06-018, an abiotic small molecule discovered in a high-throughput screen, represents one of the most potent known LasR antagonists but has seen little study since its initial report. Herein, we report a systematic study of the structure-activity relationships (SARs) that govern LasR antagonism by V-06-018. We synthesized a focused library of V-06-018 derivatives and evaluated the library for bioactivity using a variety of cell-based LasR reporter systems. The SAR trends revealed by these experiments allowed us to design probes with 10-fold greater potency than that of V-06-018 and 100-fold greater potency than other commonly used N-acyl-l-homoserine lactone (AHL)-based LasR antagonists, along with high selectivities for LasR. Biochemical experiments to probe the mechanism of antagonism by V-06-018 and its analogues support these compounds interacting with the native ligand-binding site in LasR and, at least in part, stabilizing an inactive form of the protein. The compounds described herein are the most potent and efficacious antagonists of LasR known and represent robust probes both for characterizing the mechanisms of LuxR-type QS and for chemical biology research in general in the growing QS field.


Assuntos
Proteínas de Bactérias/antagonistas & inibidores , Pseudomonas aeruginosa/efeitos dos fármacos , Percepção de Quorum/efeitos dos fármacos , Transativadores/antagonistas & inibidores , Acil-Butirolactonas/química , Desenho de Fármacos , Concentração Inibidora 50 , Pseudomonas aeruginosa/patogenicidade , Bibliotecas de Moléculas Pequenas , Relação Estrutura-Atividade , Virulência/efeitos dos fármacos
19.
J Am Chem Soc ; 142(2): 750-761, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31859506

RESUMO

We report the solution-phase structures of native signal peptides and related analogs capable of either strongly agonizing or antagonizing the AgrC quorum sensing (QS) receptor in the emerging pathogen Staphylococcus epidermidis. Chronic S. epidermidis infections are often recalcitrant to traditional therapies due to antibiotic resistance and formation of robust biofilms. The accessory gene regulator (agr) QS system plays an important role in biofilm formation in this opportunistic pathogen, and the binding of an autoinducing peptide (AIP) signal to its cognate transmembrane receptor (AgrC) is responsible for controlling agr. Small molecules or peptides capable of modulating this binding event are of significant interest as probes to investigate both the agr system and QS as a potential antivirulence target. We used NMR spectroscopy to characterize the structures of the three native S. epidermidis AIP signals and five non-native analogs with distinct activity profiles in the AgrC-I receptor from S. epidermidis. These studies revealed a suite of structural motifs critical for ligand activity. Interestingly, a unique ß-turn was present in the macrocycles of the two most potent AgrC-I modulators, in both an agonist and an antagonist, which was distinct from the macrocycle conformation in the less-potent AgrC-I modulators and in the native AIP-I itself. This previously unknown ß-turn provides a structural rationale for these ligands' respective biological activity profiles. Development of analogs to reinforce the ß-turn resulted in our first antagonist with subnanomolar potency in AgrC-I, while analogs designed to contain a disrupted ß-turn were dramatically less potent relative to their parent compounds. Collectively, these studies provide new insights into the AIP:AgrC interactions crucial for QS activation in S. epidermidis and advance the understanding of QS at the molecular level.


Assuntos
Sinais Direcionadores de Proteínas/fisiologia , Percepção de Quorum , Staphylococcus epidermidis/fisiologia
20.
Sci Rep ; 9(1): 13449, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31530834

RESUMO

The Burkholderia cepacia complex (Bcc) is a family of closely related bacterial pathogens that are the causative agent of deadly human infections. Virulence in Bcc species has been shown to be controlled by the CepI/CepR quorum sensing (QS) system, which is mediated by an N-acyl L-homoserine lactone (AHL) signal (C8-AHL) and its cognate LuxR-type receptor (CepR). Chemical strategies to block QS in Bcc members would represent an approach to intercept this bacterial communication process and further delineate its role in infection. In the current study, we sought to identify non-native AHLs capable of agonizing or antagonizing CepR, and thereby QS, in a Bcc member. We screened a library of AHL analogs in cell-based reporters for CepR, and identified numerous highly potent CepR agonists and antagonists. These compounds remain active in a Bcc member, B. multivorans, with one agonist 250-fold more potent than the native ligand C8-AHL, and can affect QS-controlled motility. Further, the CepR antagonists prolong C. elegans survival in an infection model. These AHL analogs are the first reported non-native molecules that both directly modulate CepR and impact QS-controlled phenotypes in a Bcc member, and represent valuable chemical tools to assess the role of QS in Bcc infections.


Assuntos
Proteínas de Bactérias/antagonistas & inibidores , Complexo Burkholderia cepacia/efeitos dos fármacos , Complexo Burkholderia cepacia/patogenicidade , Percepção de Quorum/efeitos dos fármacos , Acil-Butirolactonas/metabolismo , Animais , Proteínas de Bactérias/agonistas , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Infecções por Burkholderia/microbiologia , Caenorhabditis elegans/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Escherichia coli/genética , Genes Reporter , Ligantes , Percepção de Quorum/fisiologia , beta-Galactosidase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...