Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 301: 113802, 2021 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-34638039

RESUMO

The ability to detect human fecal pollution in water is of great importance when assessing the associated health risks. Many microbial source tracking (MST) markers have been proposed to determine the origin of fecal pollution, but their application remains challenging. A range of factors, not yet sufficiently analyzed, may affect MST markers in the environment, such as dilution and inactivation processes. In this work, a statistical framework based on Monte Carlo simulations and non-linear regression was used to develop a classification procedure for use in MST studies. The predictive model tested uses only two parameters: somatic coliphages (SOMCPH), as an index of general fecal pollution, and human host-specific bacteriophages that infect Bacteroides thetaiotaomicron strain GA17 (GA17PH). Taking into account bacteriophage dilution and differential inactivation, the threshold concentration of SOMCPH was calculated to be around 500 PFU/100 mL for a limit of detection of 10 PFU/100 mL. However, this threshold can be lowered by increasing the analyzed volume sample, which in turn lowers the limit of detection. The resulting model is sufficiently accurate for application in practical cases involving MST and could be easily used with markers other than those tested here.

2.
Water Res ; 203: 117543, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34433109

RESUMO

According to the European Directives (UE) 2020/2184 and 2009/54/EC, which establishes the sanitary criteria for water intended for human consumption in Europe, water suitable for human consumption must be free of the bacterial indicators Escherichia coli, Clostridium perfringens and Enterococcus spp. Drinking water is also monitored for heterotrophic bacteria, which are not a human health risk, but can serve as an index of bacteriological water quality. Therefore, a rapid, accurate, and cost-effective method for the identification of these colonies would improve our understanding of the culturable bacteria of drinking water and facilitate the task of water management by treatment facilities. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) is potentially such a method, although most of the currently available mass spectral libraries have been developed in a clinical setting and have limited environmental applicability. In this work, a MALDI-TOF MS drinking water library (DWL) was defined and developed by targeting bacteria present in water intended for human consumption. This database, made up of 319 different bacterial strains, can contribute to the routine microbiological control of either treated drinking water or mineral bottled water carried out by water treatment and distribution operators, offering a faster identification rate compared to a clinical sample-based library. The DWL, made up of 96 bacterial genera, 44 of which are not represented in the MALDI-TOF MS bacterial Bruker Daltonics (BDAL) database, was found to significantly improve the identification of bacteria present in drinking water.


Assuntos
Água Potável , Purificação da Água , Bactérias , Bases de Dados Factuais , Humanos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
3.
Viruses ; 13(6)2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-34200458

RESUMO

Bacteriophages are promising tools for the detection of fecal pollution in different environments, and particularly for viral pathogen risk assessment. Having similar morphological and biological characteristics, bacteriophages mimic the fate and transport of enteric viruses. Enteric bacteriophages, especially phages infecting Escherichia coli (coliphages), have been proposed as alternatives or complements to fecal indicator bacteria. Here, we provide a general overview of the potential use of enteric bacteriophages as fecal and viral indicators in different environments, as well as the available methods for their detection and enumeration, and the regulations for their application.


Assuntos
Bacteriófagos , Indicadores Ambientais , Monitoramento Ambiental , Poluição Ambiental , Fezes/virologia , Microbiologia , Animais , Bacteriófagos/classificação , Bacteriófagos/genética , Monitoramento Ambiental/métodos , Fezes/microbiologia , Humanos , Técnicas Microbiológicas
4.
Front Microbiol ; 12: 619495, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34012424

RESUMO

The detection of fecal viral pathogens in water is hampered by their great variety and complex analysis. As traditional bacterial indicators are poor viral indicators, there is a need for alternative methods, such as the use of somatic coliphages, which have been included in water safety regulations in recent years. Some researchers have also recommended the use of reference viral pathogens such as noroviruses or other enteric viruses to improve the prediction of fecal viral pollution of human origin. In this work, phages previously tested in microbial source tracking studies were compared with norovirus and adenovirus for their suitability as indicators of human fecal viruses. The phages, namely those infecting human-associated Bacteroides thetaiotaomicron strain GA17 (GA17PH) and porcine-associated Bacteroides strain PG76 (PGPH), and the human-associated crAssphage marker (crAssPH), were evaluated in sewage samples and fecal mixtures obtained from different animals in five European countries, along with norovirus GI + GII (NoV) and human adenovirus (HAdV). GA17PH had an overall sensitivity of ≥83% and the highest specificity (>88%) for human pollution source detection. crAssPH showed the highest sensitivity (100%) and specificity (100%) in northern European countries but a much lower specificity in Spain and Portugal (10 and 30%, respectively), being detected in animal wastewater samples with a high concentration of fecal indicators. The correlations between GA17PH, crAssPH, or the sum of both (BACPH) and HAdV or NoV were higher than between the two human viruses, indicating that bacteriophages are feasible indicators of human viral pathogens of fecal origin and constitute a promising, easy to use and affordable alternative to human viruses for routine water safety monitoring.

5.
Water Res ; 188: 116537, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33126005

RESUMO

Nitrate (NO3-) pollution adversely impacts surface and groundwater quality. In recent decades, many countries have implemented measures to control and reduce anthropogenic nitrate pollution in water resources. However, to effectively implement mitigation measures at the origin of pollution,the source of nitrate must first be identified. The stable nitrogen and oxygen isotopes of NO3- (ẟ15N and ẟ18O) have been widely used to identify NO3- sources in water, and their combination with other stable isotopes such as boron (ẟ11B) has further improved nitrate source identification. However, the use of these datasets has been limited due to their overlapping isotopic ranges, mixing between sources, and/or isotopic fractionation related to physicochemical processes. To overcome these limitations, we combined a multi-isotopic analysis with fecal indicator bacteria (FIB) and microbial source tracking (MST) techniques to improve nitrate origin identification. We applied this novel approach on 149 groundwater and 39 surface water samples distributed across Catalonia (NE Spain). A further 18 wastewater treatment plant (WWTP) effluents were also isotopically and biologically characterized. The groundwater and surface water results confirm that isotopes and MST analyses were complementary and provided more reliable information on the source of nitrate contamination. The isotope and MST data agreed or partially agreed in most of the samples evaluated (79 %). This approach was especially useful for nitrate pollution tracing in surface water but was also effective in groundwater samples influenced by organic nitrate pollution. Furthermore, the findings from the WWTP effluents suggest that the use of literature values to define the isotopic ranges of anthropogenic sources can constrain interpretations. We therefore recommend that local sources be isotopically characterized for accurate interpretations. For instance, the detection of MST inferred animal influence in some WWTP effluents, but the ẟ11B values were higher than those reported in the literature for wastewater. The results of this study have been used by local water authorities to review uncertain cases and identify new vulnerable zones in Catalonia according to the European Nitrate Directive (91/676/CEE).


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Animais , Monitoramento Ambiental , Nitratos/análise , Isótopos de Nitrogênio/análise , Espanha , Poluentes Químicos da Água/análise
6.
Int J Food Microbiol ; 334: 108850, 2020 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-32919261

RESUMO

The complex and highly diverse microbial environment of drinking water, consisting mainly of bacteria at different metabolic states, is still underexplored. The aim of this work was to characterize the bacterial communities in tap water and bottled mineral water, the two predominant sources of drinking water in modern societies. A total of 11 tap water samples from a range of locations and distribution networks and 10 brands of bottled natural mineral water were analysed using two approaches: a) heterotrophic plate counts by matrix-assisted laser desorption/ionization time of flight mass-spectrometry (MALDI-TOF MS) for the culturable heterotrophic communities, and b) Illumina amplicon sequencing for total bacteria including non-culturable bacteria. Culturable heterotrophic bacteria were isolated in WPCA (ISO) agar at 22 ± 2 °C for 72 h and 2046 isolates were identified using MALDI-TOF MS. The Bruker Daltonics Library and a previously customized library (Drinking Water Library) were used as reference databases. For the total bacteria fraction, DNA was extracted from 6 L of water and submitted to Illumina 16S rRNA sequencing of the v4 region. Significant differences were observed between mineral and tap water, with a general dominance of Alphaproteobacteria (mainly the genus Blastomonas) in tap water and Gammaproteobacteria in mineral water with Acidovorax being the dominant genus in 3 out of 7 mineral water brands. The bacterial communities in the different brands of mineral water were highly diverse and characteristic of each one. Moreover, the season in which the water was bottled also affected the species distribution, with some of them identified in only one season. Among the culturable bacteria, the most abundant phylum was Proteobacteria (around 85% of the isolates), followed by Actinobacteria, Firmicutes and Bacteroidetes. Proteobacteria was also the most abundant phylum detected with Illumina sequencing (>99% of the reads). The two methods gave distinct results at the different taxonomic levels and could therefore have a complimentary application in the study of microbiota in mineral water environments. MALDI-TOF MS is a promising method for the rapid identification of heterotrophic bacteria in routine water analysis in the bottling industry. SIGNIFICANCE AND IMPACT OF THE STUDY: The complementarity of MALDI-TOF MS and NGS in the assessment of bacterial community diversity has been demonstrated in water intended for human consumption. The two methods are suitable for routine use in the water industry for water quality management.


Assuntos
Técnicas Bacteriológicas , Água Potável/microbiologia , Microbiota , Águas Minerais/microbiologia , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Técnicas Bacteriológicas/métodos , Meios de Cultura/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , RNA Ribossômico 16S/genética , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
7.
Genomics ; 112(6): 4525-4535, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32781202

RESUMO

Bacillus sp. SFC 500-1E is used for the effective treatment of tannery effluents since it consistently removes hexavalent chromium from diverse contaminated matrices. The aim of the present study was to complete identification of the strain through a polyphasic characterization, which included the pattern of carbohydrate utilization, fatty acids profile, multilocus sequence analysis, multiplex PCR profile and the analysis of the complete genome sequence. Morpho-physiological and biochemical characterization results and analysis of 16S rRNA sequences were not conclusive. The strain formed a monophyletic clade with B. toyonensis BCT-7112, B. thuringiensis MC28 and B. cereus Rock 1-3. However, genomic comparisons with type strains of B. cereus and B. thuringiensis showed that the isolated belonged to a different species. Results of this study highlight the relevance of the genome sequence of this strain, identified as Bacillus toyonensis SFC 500-1E, to expand knowledge of its bioremediation potential and to explore unknown decontamination activities.

8.
Environ Pollut ; 266(Pt 1): 115254, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32721842

RESUMO

Water quality monitoring is essential to safeguard human and environmental health. The advent of next-generation sequencing techniques in recent years, which allow a more in-depth study of environmental microbial communities in the environment, could broaden the perspective of water quality monitoring to include impact of faecal pollution bacteria on ecosystem. In this study, 16 S rRNA amplicon sequencing was used to evaluate the impact of wastewater treatment plant (WWTP) effluent on autochthonous microbial communities of a temporary Mediterranean stream characterized by high flow seasonality (from 0.02 m3/s in winter to 0.006 m3/s in summer). Seven sampling campaigns were performed under different temperatures and streamflow conditions (winter and summer). Water samples were collected upstream (Upper) of the WWTP, the secondary effluent (EF) discharge and 75 m (P75) and 1000 m (P1000) downstream of the WWTP. A total of 5,593,724 sequences were obtained, giving rise to 20,650 amplicon sequence variants (ASV), which were further analysed and classified into phylum, class, family and genus. Each sample presented different distribution and abundance of taxa. Although taxon distribution and abundance differed in each sample, the microbial community structure of P75 resembled that of EF samples, and Upper and P1000 samples mostly clustered together. Alpha diversity showed the highest values for Upper and P1000 samples and presented seasonal differences, being higher in winter conditions of high streamflow and low temperature. Our results suggest the microbial ecology re-establishment, since autochthonous bacterial communities were able to recover from the impact of the WWTP effluent in 1 km. Alpha diversity results indicates a possible influence of environmental factors on the bacterial community structure. This study shows the potential of next-generation sequencing techniques as useful tools in water quality monitoring and management within the climate change scenario.


Assuntos
Microbiota , Esgotos , Bactérias/genética , Humanos , RNA Ribossômico 16S , Águas Residuárias
9.
Water Res ; 184: 116215, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32726738

RESUMO

F-specific coliphages have been proposed as viral indicators of fecal pollution. These intestinal phages infect cells through the F-pili of the host strains used for their detection, Escherichia. coli HS/FAmp in the US-EPA standard method and Salmonella enterica WG49 in the ISO method. The recently designed Bluephage protocol allows the rapid detection of as low as one somatic coliphage in a working day. The current study describes a new Bluephage method designed to exclusively detect F-specific phages. It employs two new host strains, CB14 and CB16, which detect the same number of F-specific phages as their respective parental strains HS and WG49. In the Bluephage method, when the strain is lysed by bacteriophage infection, the yellow medium turns blue. As low as one F-specific phage was detected in 3 to 5 h by this approach and when the sample contained high phage concentrations, results were obtained in less than 3 h. The F-specific Bluephage method can be used with different sample volumes and allows phage quantification by the most probable number technique. Strain CB14 performed more consistently than CB16, with comparable detection efficiency after increasing the incubation time to 50 min without shaking.


Assuntos
Bacteriófagos , Microbiologia da Água , Colífagos , Escherichia coli , Fezes
10.
J Microbiol Methods ; 173: 105940, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32387115

RESUMO

Somatic and F-specific coliphages are gaining ground as indicators of fecal/viral pollution. Guidelines and regulations worldwide for monitoring water, biosolids and food are including them as parameters to assess quality and treatment efficiency. Robust methods to detect and quantify both groups of phages in water samples have been launched by agencies such as the International Standardization Organization (ISO) and the USA Environmental Protection Agency (USEPA). Although these methods have proved readily implementable in routine microbiology laboratories, faster and more user-friendly protocols will be highly welcome if coliphage detection becomes routine in water quality analysis. We here provide an overview of new approaches seeking to facilitate the detection of infectious coliphages included in guidelines and regulations. The improvements achieved suggest that streamlined kits able to provide results in a few hours at very reasonable costs will become available in the near future. The potential of molecular procedures and methods based on microelectronic sensors is also briefly discussed.


Assuntos
Colífagos/isolamento & purificação , Fezes/virologia , Técnicas Microbiológicas/métodos , Fezes/microbiologia , Estados Unidos , United States Environmental Protection Agency , Microbiologia da Água , Qualidade da Água
11.
Food Environ Virol ; 12(2): 148-157, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32006190

RESUMO

Enteric bacteriophages (somatic coliphages, F-specific coliphages or both together) are now recognized as useful viral indicators in water, shellfish, and biosolids and are being progressively included in national and international sanitary regulations. Among them, somatic coliphages have an advantage in that they usually outnumber F-RNA coliphages in water environments. Their enumeration using Modified Scholten's (MS) media, following the ISO 10705-2 standard for the growth of Escherichia coli host strain WG5, is highly efficient and a common practice worldwide. These media contain a high concentration of nutrients, which may be modified to save costs without loss of bacterial growth host efficiency. This study explored reducing the concentration of nutrients in the current formulation and/or incorporating new components to improve the host bacterial growth and/or the enumeration of somatic coliphages at an affordable analytical cost. A twofold dilution of the original MS media was found not to affect the bacterial growth rate. The addition of combinations of assayed compounds to twofold diluted MS media slightly enhanced its analytical performance without altering bacterial growth. By generating savings in both cost and time while maintaining optimal results, media dilution could be applied to design new simple applications for coliphage enumeration.


Assuntos
Bacteriófagos/crescimento & desenvolvimento , Colífagos/crescimento & desenvolvimento , Meios de Cultura/metabolismo , Bacteriófagos/genética , Bacteriófagos/isolamento & purificação , Bacteriófagos/metabolismo , Colífagos/genética , Colífagos/isolamento & purificação , Colífagos/metabolismo , Meios de Cultura/química , Escherichia coli/virologia , Cultura de Vírus/instrumentação , Cultura de Vírus/métodos
12.
Environ Res ; 182: 109133, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32069755

RESUMO

Solid or semisolid matrices polluted with fecal remnants can be highly loaded with pathogens, especially viruses, and play a substantial role in the persistence and dispersion of pathogens in the water cycle. Water quality regulations and guidelines are increasingly including bacteriophages infecting enteric bacteria as indicators of fecal and/or viral pollution. However, more data are needed about viral indicators in contaminated solids to develop effective sanitation strategies for the management of raw and treated sludge, fecal sludge, manures and slurries. Also, the exact role of sediments and soil in the transmission cycle of viral pathogens still needs to be determined. This review aims to provide an update on available data for concentrations of indicator bacteriophages in different solid matrices as well as their resistance to treatments and persistence in solids. The conclusion reached is that there is a need for improved and standardized methodologies for bacteriophage extraction, detection and enumeration in solids. Reports indicate that these contain higher levels of somatic coliphages in comparison with traditional bacterial indicators and F-specific RNA coliphages. Water body sediments and soil have been found to be notable reservoirs of somatic coliphages, which are more persistent in nature and resistant to sludge treatments than Escherichia coli and fecal coliforms and F-specific RNA coliphages. Thus, somatic coliphages show up as excellent complementary indicators for the prediction of pathogenic viruses in solids.


Assuntos
Bacteriófagos , Monitoramento Ambiental , Esgotos , Biossólidos , Fezes/microbiologia , Solo , Microbiologia da Água
13.
Int J Hyg Environ Health ; 225: 113450, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31962274

RESUMO

Intestinal pathogenic microorganisms are introduced into the water by means of faecal contamination, thus creating a threat to public health and to the environment. Detecting these contaminants has been difficult due to such an analysis being costly and time-intensive; as an alternative, microbiological indicators have been used for this purpose, although they cannot differentiate between human or animal sources of contamination because these indicators are part of the digestive tracts of both. To identify the sources of faecal pollution, the use of chemical, microbiological and molecular markers has been proposed. Currently available markers present some geographical specificity. The aim of this study was to select microbial and molecular markers that could be used to differentiate the sources of faecal pollution in the Bogotá River and to use them as tools for the evaluation and identification of the origin of discharges and for quality control of the water. In addition to existing microbial source markers, a phage host strain (PZ8) that differentiates porcine contamination was isolated from porcine intestinal content. The strain was identified biochemically and genotypically as Bacteroides. The use of this strain as a microbial source tracking indicator was evaluated in bovine and porcine slaughterhouse wastewaters, raw municipal wastewaters and the Bogotá River. The results obtained indicate that the selected microbial and molecular markers enable the determination of the source of faecal contamination in the Bogotá River by using different algorithms to develop prediction models.


Assuntos
Bacteroides/isolamento & purificação , Monitoramento Ambiental/métodos , Fezes , Poluentes da Água/isolamento & purificação , Poluição da Água , Matadouros , Animais , Bovinos , Colômbia , Aprendizado de Máquina , Rios/microbiologia , Suínos , Águas Residuárias/microbiologia , Microbiologia da Água
14.
Water Res ; 171: 115392, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31865126

RESUMO

The last decades have seen the development of several source tracking (ST) markers to determine the source of pollution in water, but none of them show 100% specificity and sensitivity. Thus, a combination of several markers might provide a more accurate classification. In this study Ichnaea® software was improved to generate predictive models, taking into account ST marker decay rates and dilution factors to reflect the complexity of ecosystems. A total of 106 samples from 4 sources were collected in 5 European regions and 30 faecal indicators and ST markers were evaluated, including E. coli, enterococci, clostridia, bifidobacteria, somatic coliphages, host-specific bacteria, human viruses, host mitochondrial DNA, host-specific bacteriophages and artificial sweeteners. Models based on linear discriminant analysis (LDA) able to distinguish between human and non-human faecal pollution and identify faecal pollution of several origins were developed and tested with 36 additional laboratory-made samples. Almost all the ST markers showed the potential to correctly target their host in the 5 areas, although some were equivalent and redundant. The LDA-based models developed with fresh faecal samples were able to differentiate between human and non-human pollution with 98.1% accuracy in leave-one-out cross-validation (LOOCV) when using 2 molecular human ST markers (HF183 and HMBif), whereas 3 variables resulted in 100% correct classification. With 5 variables the model correctly classified all the fresh faecal samples from 4 different sources. Ichnaea® is a machine-learning software developed to improve the classification of the faecal pollution source in water, including in complex samples. In this project the models were developed using samples from a broad geographical area, but they can be tailored to determine the source of faecal pollution for any user.


Assuntos
Microbiologia da Água , Água , Ecossistema , Monitoramento Ambiental , Escherichia coli , Fezes , Humanos , Poluição da Água
15.
Food Microbiol ; 82: 1-10, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31027761

RESUMO

Natural mineral waters contain indigenous bacteria characteristic of each spring source. Once bottled, these communities change over time until the water is consumed. Bottle material is believed to play a major role in the succession of these populations, but very few studies to date have evaluated the effect of this material on bacterial communities. In this study, we examined the microbial community structure of three natural mineral waters over 3 months after bottling in glass and polyethylene terephthalate (PET) bottles. To this end, we used culture-dependent (heterotrophic plate count) and culture-independent methods (16S rRNA massive gene sequencing, denaturing gradient gel electrophoresis (DGGE) and fluorescent microscopy with vital dyes). Total and viable cell counts increased by around 1-2 log10 units between 1 and 2 weeks after bottling and then remained constant over 3 months for all waters regardless of the bottle material. DGGE fingerprints and 16S rRNA massive sequencing analysis both indicated that different communities were established in the waters two weeks after bottling in the different bottle materials. In conclusion, no differences in total, viable and culturable bacteria counts were observed between mineral waters bottled with PET or glass during shelf life storage. Nevertheless, in spite of changes in the communities, each water brand and material presented a distinct microbial community structure clearly distinguishable from the others, which could be interesting for traceability purposes.


Assuntos
Bactérias/isolamento & purificação , Água Potável/microbiologia , Armazenamento de Alimentos , Águas Minerais/microbiologia , Microbiologia da Água , Bactérias/classificação , Contagem de Colônia Microbiana , Variação Genética , Vidro , Sequenciamento de Nucleotídeos em Larga Escala , Metagenômica , Polietilenotereftalatos , Reação em Cadeia da Polimerase , RNA Ribossômico 16S/genética
16.
Sci Total Environ ; 655: 263-272, 2019 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-30471594

RESUMO

Two groups of coliphages have been recently included in different water management policies as indicators of viral fecal pollution in water and food: somatic coliphages, which infect E. coli through cell wall receptors, and F-specific RNA coliphages, which infect through the F-pili. Somatic coliphages are more abundant in fecally contaminated waters, except reclaimed waters, those disinfected by UV irradiation, and some groundwater samples that show a higher level of F-specific coliphages. Somatic coliphages are morphologically similar to DNA enteric viruses while F-specific coliphages are similar to RNA viruses such as norovirus and hepatitis A viruses, which are the viral pathogens of concern in sewage. The use of strains sensitive to both types of phages has been proposed for total coliphage enumeration, thereby avoiding double analysis. The standardized methods available for coliphage detection are robust and cost-effective, but the introduction of ready-to-use methods would facilitate routine implementation in laboratories. The fastest available tool for somatic coliphage enumeration is the recently developed Bluephage, which uses a modified ß-glucuronide-overexpressing E. coli strain unable to take up the glucuronide substrate. The overexpressed enzyme accumulates inside the bacterial cells until released by phage-induced cell lysis, whereupon it encounters its substrate and the medium changes from yellow to blue. The present method uses E. coli strain CB12, sensitive to somatic coliphages and F-specific coliphages due to the expression of the F-pili. The Bluephage approach incorporating CB12 detects both types of coliphages in a time range of 1:30 to 4:00 h, as assayed with coliphages from raw sewage, river water, sludge and mussels. This strategy can be applied to obtain qualitative and quantitative results and is applicable to microplates as well as to large sample volumes (100 ml). Moreover it can provide monitoring of water bodies at real time, as for example for ambient recreational beach monitoring.


Assuntos
Colífagos/isolamento & purificação , Monitoramento Ambiental/métodos , Escherichia coli/virologia , Fator F/genética , Fezes/virologia , Água Doce/virologia , Microbiologia da Água/normas , Colífagos/genética , Escherichia coli/genética , Genes Bacterianos , Plasmídeos , Fagos RNA/isolamento & purificação
17.
Environ Sci Technol ; 52(9): 5076-5084, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29570973

RESUMO

Numerous bacterial genetic markers are available for the molecular detection of human sources of fecal pollution in environmental waters. However, widespread application is hindered by a lack of knowledge regarding geographical stability, limiting implementation to a small number of well-characterized regions. This study investigates the geographic distribution of five human-associated genetic markers (HF183/BFDrev, HF183/BacR287, BacHum-UCD, BacH, and Lachno2) in municipal wastewaters (raw and treated) from 29 urban and rural wastewater treatment plants (750-4 400 000 population equivalents) from 13 countries spanning six continents. In addition, genetic markers were tested against 280 human and nonhuman fecal samples from domesticated, agricultural and wild animal sources. Findings revealed that all genetic markers are present in consistently high concentrations in raw (median log10 7.2-8.0 marker equivalents (ME) 100 mL-1) and biologically treated wastewater samples (median log10 4.6-6.0 ME 100 mL-1) regardless of location and population. The false positive rates of the various markers in nonhuman fecal samples ranged from 5% to 47%. Results suggest that several genetic markers have considerable potential for measuring human-associated contamination in polluted environmental waters. This will be helpful in water quality monitoring, pollution modeling and health risk assessment (as demonstrated by QMRAcatch) to guide target-oriented water safety management across the globe.


Assuntos
Águas Residuárias , Poluição da Água , Animais , Monitoramento Ambiental , Fezes , Marcadores Genéticos , Humanos , Microbiologia da Água
18.
Environ Int ; 115: 133-141, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29567433

RESUMO

Bacteriophages are ubiquitously distributed prokaryotic viruses that are more abundant than bacteria. As a consequence of their life cycle, phages can kidnap part of their host's genetic material, including antibiotic resistance genes (ARGs), which released phage particles transfer in a process called transduction. The spread of ARGs among pathogenic bacteria currently constitutes a serious global health problem. In this study, fresh vegetables (lettuce, spinach and cucumber), and cropland soil were screened by qPCR for ten ARGs (blaTEM, blaCTX-M-1 group, blaCTX-M-9 group, blaOXA-48, blaVIM, mecA, sul1, qnrA, qnrS and armA) in their viral DNA fraction. The presence of ARGs in the phage DNA was analyzed before and after propagation experiments in an Escherichia coli host strain to evaluate the ability of the phage particles to infect a host. ARGs were found in the phage DNA fraction of all matrices, although with heterogeneous values. ARG prevalence was significantly higher in lettuce and soil, and the most common overall were ß-lactamases. After propagation experiments, an increase in ARG densities in phage particles was observed in samples of all four matrices, confirming that part of the isolated phage particles were infectious. This study reveals the abundance of free, replicative ARG-containing phage particles in vegetable matrices and cropland soil. The particles are proposed as vehicles for resistance transfer in these environments, where they can persist for a long time, with the possibility of generating new resistant bacterial strains. Ingestion of these mobile genetic elements may also favor the emergence of new resistances, a risk not previously considered.


Assuntos
Bacteriófagos/genética , Resistência Microbiana a Medicamentos/genética , Microbiologia do Solo , Verduras/virologia , Agricultura , Bacteriófagos/efeitos dos fármacos , Genes Virais/genética
19.
J Water Health ; 15(6): 885-897, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29215353

RESUMO

The aim of this work was to assess the suitability of matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) for routine heterotrophic monitoring in a drinking water treatment plant. Water samples were collected from raw surface water and after different treatments during two campaigns over a 1-year period. Heterotrophic bacteria were studied and isolates were identified by MALDI-TOF MS. Moreover, the diversity index and the coefficient of population similarity were also calculated using biochemical fingerprinting of the populations studied. MALDI-TOF MS enabled us to characterize and detect changes in the bacterial community composition throughout the water treatment plant. Raw water showed a large and diverse population which was slightly modified after initial treatment steps (sand filtration and ultrafiltration). Reverse osmosis had a significant impact on the microbial diversity, while the final chlorination step produced a shift in the composition of the bacterial community. Although MALDI-TOF MS could not identify all the isolates since the available MALDI-TOF MS database does not cover all the bacterial diversity in water, this technique could be used to monitor bacterial changes in drinking water treatment plants by creating a specific protein profile database for tracking purposes.


Assuntos
Bactérias/isolamento & purificação , Água Potável/microbiologia , Monitoramento Ambiental/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Purificação da Água/normas
20.
J Environ Qual ; 46(4): 760-766, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28783792

RESUMO

Microbial source tracking (MST) has been extensively used to detect the sources of fecal pollution in water. The inclusion of MST in water management strategies improves the ecological status of the ecosystem and human and animal health under interdisciplinary analysis in all aspects of health care for humans, animals, and the environment (One Health approach). In this study, the performance of MST markers targeting host-specific Bacteroidales (HF183 and Rum-2-Bac) and species (HMBif and CWBif) were evaluated in raw sewage collected from human, ruminant, swine, and poultry sources in Tunisia, Cyprus, Ireland, and Spain. In addition, the ratio between somatic coliphages and bacteriophages infecting GA17 (SOMCPH/GA17PH) was measured in Tunisia and Spain. The obtained results showed variability of the bacterial markers between the four countries, suggesting that their usefulness could be affected by several conditions (dietary habits, agricultural practices, and climatic conditions) that differ between countries. The Rum-2-Bac marker stood out as a valid MST tool, particularly in Ireland, whereas CWBif was the best option in Tunisia, Spain, and Cyprus. The human-specific HMBif marker showed good sensitivity and specificity in Tunisia, Spain, and Ireland, whereas HF183 showed a low specificity. However, HF183 was suggested as a good human marker in Ireland and Cyprus because of its higher concentration than HMBif. Regarding viral markers, the ratio of SOMCPH/GA17PH showed a clear discrimination between human and nonhuman samples. The combined use of molecular bacterial markers and the ratio of SOMCPH/GA17PH may improve the success of MST.


Assuntos
Monitoramento Ambiental , Microbiologia da Água , Poluição da Água , Animais , Bacteroidetes , Fezes , Humanos , Espanha
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...