Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Mais filtros

Base de dados
Intervalo de ano de publicação
Ecol Evol ; 10(12): 5852-5863, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32607195


A key focus of ecologists is explaining the origin and maintenance of morphological diversity and its association with ecological success. We investigate potential benefits and costs of a common and varied morphological trait, cuticular spines, for foraging behavior, interspecific competition, and predator-prey interactions in naturally co-occurring spiny ants (Hymenoptera: Formicidae: Polyrhachis) in an experimental setting. We expect that a defensive trait like spines might be associated with more conspicuous foraging, a greater number of workers sent out to forage, and potentially increased competitive ability. Alternatively, consistent with the ecological trade-off hypothesis, we expect that investment in spines for antipredator defense might be negatively correlated with these other ecological traits. We find little evidence for any costs to ecological traits, instead finding that species with longer spines either outperform or do not differ from species with shorter spines for all tested metrics, including resource discovery rate and foraging effort as well as competitive ability and antipredator defense. Spines appear to confer broad antipredator benefits and serve as a form of defense with undetectable costs to key ecological abilities like resource foraging and competitive ability, providing an explanation for both the ecological success of the study genus and the large number of evolutionary origins of this trait across all ants. This study also provides a rare quantitative empirical test of ecological effects related to a morphological trait in ants.

Evolution ; 71(2): 315-328, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27859046


Evolutionary biologists have long predicted that evolutionary trade-offs among traits should constrain morphological divergence and species diversification. However, this prediction has yet to be tested in a broad evolutionary context in many diverse clades, including ants. Here, we reconstruct an expanded ant phylogeny representing 82% of ant genera, compile a new family-wide trait database, and conduct various trait-based analyses to show that defensive traits in ants do exhibit an evolutionary trade-off. In particular, the use of a functional sting negatively correlates with a suite of other defensive traits including spines, large eye size, and large colony size. Furthermore, we find that several of the defensive traits that trade off with a sting are also positively correlated with each other and drive increased diversification, further suggesting that these traits form a defensive suite. Our results support the hypothesis that trade-offs in defensive traits significantly constrain trait evolution and influence species diversification in ants.

Formigas/anatomia & histologia , Formigas/fisiologia , Evolução Biológica , Traços de História de Vida , Animais , Formigas/genética , Fenótipo , Filogenia , Análise de Sequência de DNA
J Biogeogr ; 42(12): 2289-2301, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27660394


AIM: We sought to reconstruct the biogeographical structure and dynamics of a hyperdiverse ant genus, Pheidole, and to test several predictions of the taxon cycle hypothesis. Using large datasets on Pheidole geographical distributions and phylogeny, we (1) inferred patterns of biogeographical modularity (clusters of areas with similar faunal composition), (2) tested whether species in open habitats are more likely to be expanding their range beyond module boundaries, and (3) tested whether there is a bias of lineage flow from high- to low-diversity areas. LOCATION: The Old World. METHODS: We compiled and jointly analysed a comprehensive database of Pheidole geographical distributions, the ecological affinities of different species, and a multilocus phylogeny of the Old World radiation. We used network modularity methods to infer biogeographical structure in the genus and comparative methods to evaluate the hypotheses. RESULTS: The network analysis identified eight biogeographical modules, and a suite of species with anomalous ranges that are statistically more likely to occur in open habitat, supporting the hypothesis that open habitats promote range expansion. Phylogenetic analysis shows evidence for a cascade pattern of colonization from Asia to New Guinea to the Pacific, but no 'upstream' colonization in the reverse direction. MAIN CONCLUSIONS: The distributions of Pheidole lineages in the Old World are highly modular, with modules generally corresponding to biogeographical regions inferred in other groups of organisms. However, some lineages have expanded their ranges across module boundaries, and these species are more likely to be adapted to open habitats rather than interior forest. In addition, there is a cascade pattern of dispersal from higher to lower diversity areas during these range expansions. Our findings are consistent with the taxon cycle hypothesis, although they do not rule out alternative interpretations.