Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Genet Genomic Med ; 7(11): e00895, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31493343

RESUMO

BACKGROUND: Tetrasomy 21 is a very rare aneuploidy which could clinically resemble a Down syndrome. It was most often described in its partial form than complete. We report the prenatal, pathological and genetic characteristics of a fetus with mosaic complete tetrasomy 21. This is the second well-documented description of a complete tetrasomy 21 in the literature. METHODS: Prenatal and fetal pathological examinations, cytogenetic and molecular analyses were performed to characterize fetal features with tetrasomy 21. RESULTS: Prenatal ultrasound examination revealed an isolated complete atrioventricular septal defect with normal karyotype on amniotic fluid. After termination of pregnancy, clinical examination of the fetus evoked trisomy 21 or Down syndrome. Chromosomal microarray analysis and FISH on lung tissue showed a mosaicism with four copies of chromosome 21 (tetrasomy 21). CONCLUSION: Our observation and the review of the literature reported the possibility of very weak mosaicism and disease-causing confined tissue-specific mosaicism in fetus or alive patients with chromosome 21 aneuploidy, mainly Down syndrome. In case of clinical diagnosis suggestive of Down syndrome, attention must be paid to the risk of false-negative test due to chromosomal mosaicism (very weak percentage, different tissue distribution). To overcome this risk, it is necessary to privilege the diagnostic techniques without culture step and to increase the number of cells and tissues analyzed, if possible. This study highlights the limits of microarray as the unique diagnostic approach in case of weak mosaic and French cytogenetics guidelines recommend to check anomalies seen in microarray by another technique on the same tissue.

2.
Eur J Hum Genet ; 27(11): 1692-1700, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31285529

RESUMO

Early infantile epileptic encephalopathy (EIEE) is a heterogeneous group of severe forms of age-related developmental and epileptic encephalopathies with onset during the first weeks or months of life. The interictal electroencephalogram (EEG) shows a "suppression burst" (SB) pattern. The prognosis is usually poor and most children die within the first two years or survive with very severe intellectual disabilities. EIEE type 3 is caused by variants affecting function, in SLC25A22, which is also responsible for epilepsy of infancy with migrating focal seizures (EIMFS). We report a family with a less severe phenotype of EIEE type 3. We performed exome sequencing and identified two unreported variants in SLC25A22 in the compound heterozygous state: NM_024698.4: c.[813_814delTG];[818 G>A] (p.[Ala272Glnfs*144];[Arg273Lys]). Functional studies in cultured skin fibroblasts from a patient showed that glutamate oxidation was strongly defective, based on a literature review. We clustered the 18 published patients (including those from this family) into three groups according to the severity of the SLC25A22-related disorders. In an attempt to identify genotype-phenotype correlations, we compared the variants according to the location depending on the protein domains. We observed that patients with two variants located in helical transmembrane domains presented a severe phenotype, whereas patients with at least one variant outside helical transmembrane domains presented a milder phenotype. These data are suggestive of a continuum of disorders related to SLC25A22 that could be called SLC25A22-related disorders. This might be a first clue to enable geneticists to outline a prognosis based on genetic molecular data regarding the SLC25A22 gene.

3.
Am J Hum Genet ; 103(5): 752-768, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30388402

RESUMO

The nuclear factor I (NFI) family of transcription factors play an important role in normal development of multiple organs. Three NFI family members are highly expressed in the brain, and deletions or sequence variants in two of these, NFIA and NFIX, have been associated with intellectual disability (ID) and brain malformations. NFIB, however, has not previously been implicated in human disease. Here, we present a cohort of 18 individuals with mild ID and behavioral issues who are haploinsufficient for NFIB. Ten individuals harbored overlapping microdeletions of the chromosomal 9p23-p22.2 region, ranging in size from 225 kb to 4.3 Mb. Five additional subjects had point sequence variations creating a premature termination codon, and three subjects harbored single-nucleotide variations resulting in an inactive protein as determined using an in vitro reporter assay. All individuals presented with additional variable neurodevelopmental phenotypes, including muscular hypotonia, motor and speech delay, attention deficit disorder, autism spectrum disorder, and behavioral abnormalities. While structural brain anomalies, including dysgenesis of corpus callosum, were variable, individuals most frequently presented with macrocephaly. To determine whether macrocephaly could be a functional consequence of NFIB disruption, we analyzed a cortex-specific Nfib conditional knockout mouse model, which is postnatally viable. Utilizing magnetic resonance imaging and histology, we demonstrate that Nfib conditional knockout mice have enlargement of the cerebral cortex but preservation of overall brain structure and interhemispheric connectivity. Based on our findings, we propose that haploinsufficiency of NFIB causes ID with macrocephaly.

4.
Eur J Hum Genet ; 26(11): 1611-1622, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30006632

RESUMO

Acrodysostosis (MIM 101800) is a dominantly inherited condition associating (1) skeletal features (short stature, facial dysostosis, and brachydactyly with cone-shaped epiphyses), (2) resistance to hormones and (3) possible intellectual disability. Acroscyphodysplasia (MIM 250215) is characterized by growth retardation, brachydactyly, and knee epiphyses embedded in cup-shaped metaphyses. We and others have identified PDE4D or PRKAR1A variants in acrodysostosis; PDE4D variants have been reported in three cases of acroscyphodysplasia. Our study aimed at reviewing the clinical and molecular findings in a cohort of 27 acrodysostosis and 5 acroscyphodysplasia cases. Among the acrodysostosis cases, we identified 9 heterozygous de novo PRKAR1A variants and 11 heterozygous PDE4D variants. The 7 patients without variants presented with symptoms of acrodysostosis (brachydactyly and cone-shaped epiphyses), but none had the characteristic facial dysostosis. In the acroscyphodysplasia cases, we identified 2 PDE4D variants. For 2 of the 3 negative cases, medical records revealed early severe infection, which has been described in some reports of acroscyphodysplasia. Subdividing our series of acrodysostosis based on the disease-causing gene, we confirmed genotype-phenotype correlations. Hormone resistance was consistently observed in patients carrying PRKAR1A variants, whereas no hormone resistance was observed in 9 patients with PDE4D variants. All patients with PDE4D variants shared characteristic facial features (midface hypoplasia with nasal hypoplasia) and some degree of intellectual disability. Our findings of PDE4D variants in two cases of acroscyphodysplasia support that PDE4D may be responsible for this severe skeletal dysplasia. We eventually emphasize the importance of some specific assessments in the long-term follow up, including cardiovascular and thromboembolic risk factors.

5.
J Med Genet ; 55(6): 422-429, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29459493

RESUMO

BACKGROUND: Segmentation defects of the vertebrae (SDV) are non-specific features found in various syndromes. The molecular bases of SDV are not fully elucidated due to the wide range of phenotypes and classification issues. The genes involved are in the Notch signalling pathway, which is a key system in somitogenesis. Here we report on mutations identified in a diagnosis cohort of SDV. We focused on spondylocostal dysostosis (SCD) and the phenotype of these patients in order to establish a diagnostic strategy when confronted with SDV. PATIENTS AND METHODS: We used DNA samples from a cohort of 73 patients and performed targeted sequencing of the five known SCD-causing genes (DLL3, MESP2, LFNG, HES7 and TBX6) in the first 48 patients and whole-exome sequencing (WES) in 28 relevant patients. RESULTS: Ten diagnoses, including four biallelic variants in TBX6, two biallelic variants in LFNG and DLL3, and one in MESP2 and HES7, were made with the gene panel, and two diagnoses, including biallelic variants in FLNB and one variant in MEOX1, were made by WES. The diagnostic yield of the gene panel was 10/73 (13.7%) in the global cohort but 8/10 (80%) in the subgroup meeting the SCD criteria; the diagnostic yield of WES was 2/28 (8%). CONCLUSION: After negative array CGH, targeted sequencing of the five known SCD genes should only be performed in patients who meet the diagnostic criteria of SCD. The low proportion of candidate genes identified by WES in our cohort suggests the need to consider more complex genetic architectures in cases of SDV.

6.
Eur J Hum Genet ; 26(2): 287-292, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29255276

RESUMO

CHARGE syndrome is a rare genetic disorder mainly due to de novo and private truncating mutations of CHD7 gene. Here we report an intriguing hot spot of intronic mutations (c.5405-7G > A, c.5405-13G > A, c.5405-17G > A and c.5405-18C > A) located in CHD7 IVS25. Combining computational in silico analysis, experimental branch-point determination and in vitro minigene assays, our study explains this mutation hot spot by a particular genomic context, including the weakness of the IVS25 natural acceptor-site and an unconventional lariat sequence localized outside the common 40 bp upstream the acceptor splice site. For each of the mutations reported here, bioinformatic tools indicated a newly created 3' splice site, of which the existence was confirmed using pSpliceExpress, an easy-to-use and reliable splicing reporter tool. Our study emphasizes the idea that combining these two complementary approaches could increase the efficiency of routine molecular diagnosis.

7.
Genet Med ; 20(2): 269-274, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28771243

RESUMO

PurposeBased on prenatal suspicion of the combination of radioulnar or radiohumeral synostosis and a peculiar shape of the skull suggestive of craniosynostosis, we report on six patients from four unrelated consanguineous families in whom Antley-Bixler syndrome was suspected during the prenatal period without mutation in genes known to be associated with the syndrome.MethodsMolecular diagnosis involved whole-exome and gene-panel sequencing. RESULTS: All sequenced patients showed a unique homozygous mutation of c.667G>A, p.Gly223Ser (NM_012200) in the beta-1,3-glucuronyltransferase 3 (B3GAT3) gene known to be involved in linkeropathy syndrome. Linkeropathies correspond to a recently identified group of heterogeneous genetic syndromes along a spectrum of skeletal and connective tissue disorders. These patients featured mainly craniosynostosis, midface hypoplasia, bilateral radioulnar synostosis, multiple neonatal fractures, dislocated joints, joint contracture, long fingers, foot deformity, and cardiovascular abnormalities. All died before 1 year of age.ConclusionWe identified a novel B3GAT3-related disorder with craniosynostosis and bone fragility, due to a unique homozygous mutation in B3GAT3. This syndrome should be considered in the prenatal period in light of the severe outcome and as an alternative diagnosis to Antley-Bixler or Shprintzen-Goldberg syndrome.


Assuntos
Osso e Ossos/anormalidades , Osso e Ossos/metabolismo , Craniossinostoses/diagnóstico , Craniossinostoses/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Glucuronosiltransferase/genética , Mutação , Osso e Ossos/patologia , Diagnóstico Diferencial , Humanos , Fenótipo , Análise de Sequência de DNA , Crânio/anormalidades , Crânio/diagnóstico por imagem , Síndrome , Ultrassonografia Pré-Natal , Sequenciamento Completo do Genoma
8.
Am J Med Genet A ; 173(12): 3136-3142, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29136349

RESUMO

Frontonasal dysplasias are rare congenital malformations of frontonasal process-derived structures, characterized by median cleft, nasal anomalies, widely spaced eyes, and cranium bifidum occultum. Several entities of syndromic frontonasal dysplasia have been described, among which, to date, only a few have identified molecular bases. We clinically ascertained a cohort of 124 individuals referred for frontonasal dysplasia. We identified six individuals with a similar phenotype, including one discordant monozygous twin. Facial features were remarkable by nasal deformity with creased ridge and depressed or absent tip, widely spaced eyes, almond-shaped palpebral fissures, and downturned corners of the mouth. All had apparently normal psychomotor development. In addition, upper limb anomalies, frontonasal encephalocele, corpus callosum agenesis, choanal atresia, and congenital heart defect were observed. We identified five reports in the literature of patients presenting with the same phenotype. Exome sequencing was performed on DNA extracted from blood of two individuals, no candidate gene was identified. In conclusion, we report six novel simplex individuals presenting with a specific frontonasal dysplasia entity associating recognizable facial features, limb and visceral malformations, and apparently normal development. The identification of discordant monozygotic twins supports the hypothesis of a mosaic disorder. Although previous patients have been reported, this is the first series, allowing delineation of a clinical subtype of frontonasal dysplasia, paving the way toward the identification of its molecular etiology.


Assuntos
Anormalidades Múltiplas/genética , Agenesia do Corpo Caloso/diagnóstico , Atresia das Cóanas/diagnóstico , Anormalidades Craniofaciais/diagnóstico , Encefalocele/diagnóstico , Face/anormalidades , Cardiopatias Congênitas/diagnóstico , Agenesia do Corpo Caloso/genética , Atresia das Cóanas/genética , Estudos de Coortes , Anormalidades Craniofaciais/classificação , Anormalidades Craniofaciais/genética , Encefalocele/genética , Encefalocele/patologia , Ossos Faciais/anormalidades , Feminino , Cardiopatias Congênitas/genética , Humanos , Lactente , Masculino , Nariz/anormalidades , Fenótipo , Sequenciamento Completo do Exoma
9.
PLoS Genet ; 13(8): e1006957, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28859103

RESUMO

Deletions at chromosome 2p25.3 are associated with a syndrome consisting of intellectual disability and obesity. The smallest region of overlap for deletions at 2p25.3 contains PXDN and MYT1L. MYT1L is expressed only within the brain in humans. We hypothesized that single nucleotide variants (SNVs) in MYT1L would cause a phenotype resembling deletion at 2p25.3. To examine this we sought MYT1L SNVs in exome sequencing data from 4, 296 parent-child trios. Further variants were identified through a genematcher-facilitated collaboration. We report 9 patients with MYT1L SNVs (4 loss of function and 5 missense). The phenotype of SNV carriers overlapped with that of 2p25.3 deletion carriers. To identify the transcriptomic consequences of MYT1L loss of function we used CRISPR-Cas9 to create a knockout cell line. Gene Ontology analysis in knockout cells demonstrated altered expression of genes that regulate gene expression and that are localized to the nucleus. These differentially expressed genes were enriched for OMIM disease ontology terms "mental retardation". To study the developmental effects of MYT1L loss of function we created a zebrafish knockdown using morpholinos. Knockdown zebrafish manifested loss of oxytocin expression in the preoptic neuroendocrine area. This study demonstrates that MYT1L variants are associated with syndromic obesity in humans. The mechanism is related to dysregulated expression of neurodevelopmental genes and altered development of the neuroendocrine hypothalamus.


Assuntos
Regulação da Expressão Gênica/genética , Hipotálamo/fisiologia , Deficiência Intelectual/genética , Proteínas do Tecido Nervoso/genética , Obesidade/genética , Fatores de Transcrição/genética , Adulto , Animais , Sistemas CRISPR-Cas , Linhagem Celular , Criança , Deleção Cromossômica , Cromossomos Humanos Par 2/genética , Feminino , Técnicas de Inativação de Genes , Humanos , Hipotálamo/metabolismo , Hipotálamo/patologia , Deficiência Intelectual/fisiopatologia , Masculino , Mutação , Obesidade/fisiopatologia , Polimorfismo de Nucleotídeo Único/genética , Peixe-Zebra
10.
Hum Mutat ; 38(5): 581-593, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28236341

RESUMO

Waardenburg syndrome (WS) is a genetic disorder characterized by sensorineural hearing loss and pigmentation anomalies. The clinical definition of four WS types is based on additional features due to defects in structures mostly arising from the neural crest, with type I and type II being the most frequent. While type I is tightly associated to PAX3 mutations, WS type II (WS2) remains partly enigmatic with mutations in known genes (MITF, SOX10) accounting for only 30% of the cases. We performed exome sequencing in a WS2 index case and identified a heterozygous missense variation in EDNRB. Interestingly, homozygous (and very rare heterozygous) EDNRB mutations are already described in type IV WS (i.e., in association with Hirschsprung disease [HD]) and heterozygous mutations in isolated HD. Screening of a WS2 cohort led to the identification of an overall of six heterozygous EDNRB variations. Clinical phenotypes, pedigrees and molecular segregation investigations unraveled a dominant mode of inheritance with incomplete penetrance. In parallel, cellular and functional studies showed that each of the mutations impairs the subcellular localization of the receptor or induces a defective downstream signaling pathway. Based on our results, we now estimate EDNRB mutations to be responsible for 5%-6% of WS2.


Assuntos
Estudos de Associação Genética , Heterozigoto , Mutação , Receptor de Endotelina B/genética , Síndrome de Waardenburg/diagnóstico , Síndrome de Waardenburg/genética , Adolescente , Adulto , Substituição de Aminoácidos , Criança , Pré-Escolar , Biologia Computacional/métodos , Análise Mutacional de DNA , Exoma , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Espaço Intracelular/metabolismo , Iris , Masculino , Taxa de Mutação , Linhagem , Fenótipo , Transporte Proteico , Sítios de Splice de RNA , Receptor de Endotelina B/metabolismo , Adulto Jovem
11.
Eur J Hum Genet ; 24(8): 1124-31, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26757980

RESUMO

Noonan syndrome is a heterogeneous autosomal dominant disorder caused by mutations in at least eight genes involved in the RAS/MAPK signaling pathway. Recently, RIT1 (Ras-like without CAAX 1) has been shown to be involved in the pathogenesis of some patients. We report a series of 44 patients from 30 pedigrees (including nine multiplex families) with mutations in RIT1. These patients display a typical Noonan gestalt and facial phenotype. Among the probands, 8.7% showed postnatal growth retardation, 90% had congenital heart defects, 36% had hypertrophic cardiomyopathy (a lower incidence compared with previous report), 50% displayed speech delay and 52% had learning difficulties, but only 22% required special education. None had major skin anomalies. One child died perinatally of juvenile myelomonocytic leukemia. Compared with the canonical Noonan phenotype linked to PTPN11 mutations, patients with RIT1 mutations appear to be less severely growth retarded and more frequently affected by cardiomyopathy. Based on our experience, we estimate that RIT1 could be the cause of 5% of Noonan syndrome patients. Because mutations found constitutionally in Noonan syndrome are also found in several tumors in adulthood, we evaluated the potential contribution of RIT1 to leukemogenesis in Noonan syndrome. We screened 192 pediatric cases of acute lymphoblastic leukemias (96 B-ALL and 96 T-ALL) and 110 cases of juvenile myelomonocytic leukemias (JMML), but detected no variation in these tumoral samples, suggesting that Noonan patients with germline RIT1 mutations are not at high risk to developing JMML or ALL, and that RIT1 has at most a marginal role in these sporadic malignancies.


Assuntos
Leucemia Mielomonocítica Juvenil/genética , Mutação , Síndrome de Noonan/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Proteínas ras/genética , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Humanos , Leucemia Mielomonocítica Juvenil/patologia , Masculino , Síndrome de Noonan/patologia , Linhagem , Fenótipo , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia
12.
Eur J Hum Genet ; 24(7): 992-1000, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26626311

RESUMO

Heterozygous COL2A1 variants cause a wide spectrum of skeletal dysplasia termed type II collagenopathies. We assessed the impact of this gene in our French series. A decision tree was applied to select 136 probands (71 Stickler cases, 21 Spondyloepiphyseal dysplasia congenita cases, 11 Kniest dysplasia cases, and 34 other dysplasia cases) before molecular diagnosis by Sanger sequencing. We identified 66 different variants among the 71 positive patients. Among those patients, 18 belonged to multiplex families and 53 were sporadic. Most variants (38/44, 86%) were located in the triple helical domain of the collagen chain and glycine substitutions were mainly observed in severe phenotypes, whereas arginine to cysteine changes were more often encountered in moderate phenotypes. This series of skeletal dysplasia is one of the largest reported so far, adding 44 novel variants (15%) to published data. We have confirmed that about half of our Stickler patients (46%) carried a COL2A1 variant, and that the molecular spectrum was different across the phenotypes. To further address the question of genotype-phenotype correlation, we plan to screen our patients for other candidate genes using a targeted next-generation sequencing approach.


Assuntos
Substituição de Aminoácidos , Artrite/genética , Doenças do Colágeno/genética , Colágeno Tipo II/genética , Doenças do Tecido Conjuntivo/genética , Perda Auditiva Neurossensorial/genética , Osteocondrodisplasias/genética , Fenótipo , Descolamento Retiniano/genética , Artrite/patologia , Doenças do Colágeno/patologia , Colágeno Tipo II/química , Doenças do Tecido Conjuntivo/patologia , Feminino , Perda Auditiva Neurossensorial/patologia , Humanos , Masculino , Osteocondrodisplasias/patologia , Linhagem , Domínios Proteicos , Descolamento Retiniano/patologia
13.
Genet Med ; 18(1): 49-56, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25790162

RESUMO

PURPOSE: Treacher Collins/Franceschetti syndrome (TCS; OMIM 154500) is a disorder of craniofacial development belonging to the heterogeneous group of mandibulofacial dysostoses. TCS is classically characterized by bilateral mandibular and malar hypoplasia, downward-slanting palpebral fissures, and microtia. To date, three genes have been identified in TCS:,TCOF1, POLR1D, and POLR1C. METHODS: We report a clinical and extensive molecular study, including TCOF1, POLR1D, POLR1C, and EFTUD2 genes, in a series of 146 patients with TCS. Phenotype-genotype correlations were investigated for 19 clinical features, between TCOF1 and POLR1D, and the type of mutation or its localization in the TCOF1 gene. RESULTS: We identified 92/146 patients (63%) with a molecular anomaly within TCOF1, 9/146 (6%) within POLR1D, and none within POLR1C. Among the atypical negative patients (with intellectual disability and/or microcephaly), we identified four patients carrying a mutation in EFTUD2 and two patients with 5q32 deletion encompassing TCOF1 and CAMK2A in particular. Congenital cardiac defects occurred more frequently among patients with TCOF1 mutation (7/92, 8%) than reported in the literature. CONCLUSION: Even though TCOF1 and POLR1D were associated with extreme clinical variability, we found no phenotype-genotype correlation. In cases with a typical phenotype of TCS, 6/146 (4%) remained with an unidentified molecular defect.


Assuntos
RNA Polimerases Dirigidas por DNA/genética , Disostose Mandibulofacial/genética , Proteínas Nucleares/genética , Fosfoproteínas/genética , Adolescente , Adulto , Sequência de Aminoácidos , Sequência de Bases , Criança , Feminino , Estudos de Associação Genética , Humanos , Masculino , Disostose Mandibulofacial/diagnóstico , Microcefalia/genética , Pessoa de Meia-Idade , Dados de Sequência Molecular , Mutação , Fatores de Alongamento de Peptídeos/genética , Ribonucleoproteína Nuclear Pequena U5/genética , Deleção de Sequência , Adulto Jovem
14.
Eur J Hum Genet ; 24(2): 228-36, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26014430

RESUMO

The etiology of congenital heart defect (CHD) combines environmental and genetic factors. So far, there were studies reporting on the screening of a single gene on unselected CHD or on familial cases selected for specific CHD types. Our goal was to systematically screen a proband of familial cases of CHD on a set of genetic tests to evaluate the prevalence of disease-causing variant identification. A systematic screening of GATA4, NKX2-5, ZIC3 and Multiplex ligation-dependent probe amplification (MLPA) P311 Kit was setup on the proband of 154 families with at least two cases of non-syndromic CHD. Additionally, ELN screening was performed on families with supravalvular arterial stenosis. Twenty-two variants were found, but segregation analysis confirmed unambiguously the causality of 16 variants: GATA4 (1 ×), NKX2-5 (6 ×), ZIC3 (3 ×), MLPA (2 ×) and ELN (4 ×). Therefore, this approach was able to identify the causal variant in 10.4% of familial CHD cases. This study demonstrated the existence of a de novo variant even in familial CHD cases and the impact of CHD variants on adult cardiac condition even in the absence of CHD. This study showed that the systematic screening of genetic factors is useful in familial CHD cases with up to 10.4% elucidated cases. When successful, it drastically improved genetic counseling by discovering unaffected variant carriers who are at risk of transmitting their variant and are also exposed to develop cardiac complications during adulthood thus prompting long-term cardiac follow-up. This study provides an important baseline at dawning of the next-generation sequencing era.


Assuntos
Testes Genéticos , Cardiopatias Congênitas/diagnóstico , Cardiopatias Congênitas/genética , Feminino , Fator de Transcrição GATA4/genética , Variação Genética , Cardiopatias Congênitas/patologia , Sequenciamento de Nucleotídeos em Larga Escala , Proteína Homeobox Nkx-2.5 , Proteínas de Homeodomínio/genética , Humanos , Masculino , Reação em Cadeia da Polimerase Multiplex , Mutação , Linhagem , Fatores de Transcrição/genética
15.
Hum Mutat ; 36(9): 894-902, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26077438

RESUMO

Beckwith-Wiedemann syndrome (BWS) is an imprinting disorder associating macroglossia, abdominal wall defects, visceromegaly, and a high risk of childhood tumor. Molecular anomalies are mostly epigenetic; however, mutations of CDKN1C are implicated in 8% of cases, including both sporadic and familial forms. We aimed to describe the phenotype of BWS patients with CDKN1C mutations and develop a functional test for CDKN1C mutations. For each propositus, we sequenced the three exons and intron-exon boundaries of CDKN1C in patients presenting a BWS phenotype, including abdominal wall defects, without 11p15 methylation defects. We developed a functional test based on flow cytometry. We identified 37 mutations in 38 pedigrees (50 patients and seven fetuses). Analysis of parental samples when available showed that all mutations tested but one was inherited from the mother. The four missense mutations led to a less severe phenotype (lower frequency of exomphalos) than the other 33 mutations. The following four tumors occurred: one neuroblastoma, one ganglioneuroblastoma, one melanoma, and one acute lymphoid leukemia. Cases of BWS caused by CDKN1C mutations are not rare. CDKN1C sequencing should be performed for BWS patients presenting with abdominal wall defects or cleft palate without 11p15 methylation defects or body asymmetry, or in familial cases of BWS.


Assuntos
Síndrome de Beckwith-Wiedemann/diagnóstico , Síndrome de Beckwith-Wiedemann/genética , Inibidor de Quinase Dependente de Ciclina p57/genética , Estudos de Associação Genética , Impressão Genômica , Fenótipo , Alelos , Sequência de Aminoácidos , Substituição de Aminoácidos , Inibidor de Quinase Dependente de Ciclina p57/metabolismo , Feminino , Genótipo , Humanos , Masculino , Dados de Sequência Molecular , Mutação , Linhagem , Alinhamento de Sequência
16.
Eur J Med Genet ; 58(3): 140-7, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25596525

RESUMO

Proximal region of chromosome 15 long arm is rich in duplicons that, define five breakpoints (BP) for 15q rearrangements. 15q11.2 microdeletion between BP1 and BP2 has been previously associated with developmental delay and atypical psychological patterns. This region contains four highly-conserved and non-imprinted genes: NIPA1, NIPA2, CYFIP1, TUBGCP5. Our goal was to investigate the phenotypes associated with this microdeletion in a cohort of 52 patients. This copy number variation (CNV) was prevalent in 0.8% patients presenting with developmental delay, psychological pattern issues and/or multiple congenital malformations. This was studied by array-CGH at six different French Genetic laboratories. We collected data from 52 unrelated patients (including 3 foetuses) after excluding patients with an associated genetic alteration (known CNV, aneuploidy or known monogenic disease). Out of 52 patients, mild or moderate developmental delay was observed in 68.3%, 85.4% had speech impairment and 63.4% had psychological issues such as Attention Deficit and Hyperactivity Disorder, Autistic Spectrum Disorder or Obsessive-Compulsive Disorder. Seizures were noted in 18.7% patients and associated congenital heart disease in 17.3%. Parents were analysed for abnormalities in the region in 65.4% families. Amongst these families, 'de novo' microdeletions were observed in 18.8% and 81.2% were inherited from one of the parents. Incomplete penetrance and variable expressivity were observed amongst the patients. Our results support the hypothesis that 15q11.2 (BP1-BP2) microdeletion is associated with developmental delay, abnormal behaviour, generalized epilepsy and congenital heart disease. The later feature has been rarely described. Incomplete penetrance and variability of expression demands further assessment and studies.


Assuntos
Deficiências do Desenvolvimento/genética , Epilepsia/genética , Cardiopatias/genética , Deficiência Intelectual/genética , Transtornos Mentais/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adolescente , Adulto , Transtorno do Deficit de Atenção com Hiperatividade/genética , Criança , Transtornos Globais do Desenvolvimento Infantil/genética , Pré-Escolar , Aberrações Cromossômicas , Deleção Cromossômica , Cromossomos Humanos Par 15/genética , Estudos de Coortes , Hibridização Genômica Comparativa , Variações do Número de Cópias de DNA , Deficiências do Desenvolvimento/diagnóstico , Epilepsia/diagnóstico , Feminino , Cardiopatias/congênito , Cardiopatias/diagnóstico , Humanos , Hibridização in Situ Fluorescente , Lactente , Deficiência Intelectual/diagnóstico , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Transtornos Mentais/diagnóstico , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Pessoa de Meia-Idade , Fenótipo , Distúrbios da Fala/genética , Adulto Jovem
17.
Am J Hum Genet ; 94(2): 288-94, 2014 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-24439109

RESUMO

Renal hypodysplasia (RHD) is a heterogeneous condition encompassing a spectrum of kidney development defects including renal agenesis, hypoplasia, and (cystic) dysplasia. Heterozygous mutations of several genes have been identified as genetic causes of RHD with various severity. However, these genes and mutations are not associated with bilateral renal agenesis, except for RET mutations, which could be involved in a few cases. The pathophysiological mechanisms leading to total absence of kidney development thus remain largely elusive. By using a whole-exome sequencing approach in families with several fetuses with bilateral renal agenesis, we identified recessive mutations in the integrin α8-encoding gene ITGA8 in two families. Itga8 homozygous knockout in mice is known to result in absence of kidney development. We provide evidence of a damaging effect of the human ITGA8 mutations. These results demonstrate that mutations of ITGA8 are a genetic cause of bilateral renal agenesis and that, at least in some cases, bilateral renal agenesis is an autosomal-recessive disease.


Assuntos
Anormalidades Congênitas/genética , Genes Recessivos , Cadeias alfa de Integrinas/genética , Nefropatias/congênito , Rim/anormalidades , Anormalidades Urogenitais/genética , Anormalidades Congênitas/patologia , Feminino , Feto/anormalidades , Homozigoto , Humanos , Cadeias alfa de Integrinas/metabolismo , Rim/patologia , Nefropatias/genética , Nefropatias/patologia , Masculino , Mutação , Linhagem , Anormalidades Urogenitais/patologia
18.
Am J Med Genet C Semin Med Genet ; 163C(2): 92-105, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23606591

RESUMO

Simpson-Golabi-Behmel syndrome (SGBS) is a rare X-linked multiple congenital abnormality/intellectual disability syndrome characterized by pre- and post-natal overgrowth, distinctive craniofacial features, macrocephaly, variable congenital malformations, organomegaly, increased risk of tumor and mild/moderate intellectual deficiency. In 1996, Glypican 3 (GPC3) was identified as the major gene causing SGBS but the mutation detection rate was only 28-70%, suggesting either genetic heterogeneity or that some patients could have alternative diagnoses. This was particularly suggested by some reports of atypical cases with more severe prognoses. In the family reported by Golabi and Rosen, a duplication of GPC4 was recently identified, suggesting that GPC4 could be the second gene for SGBS but no point mutations within GPC4 have yet been reported. In the genetics laboratory in Tours Hospital, GPC3 molecular testing over more than a decade has detected pathogenic mutations in only 8.7% of individuals with SGBS. In addition, GPC4 mutations have not been identified thus raising the question of frequent misdiagnosis. In order to better delineate the phenotypic spectrum of SGBS caused by GPC3 mutations, and to try to define specific clinical criteria for GPC3 molecular testing, we reviewed the clinical features of all male cases with a GPC3 mutation identified in the two molecular laboratories providing this test in France (Tours and Paris). We present here the results of the analysis of 42 patients belonging to 31 families and including five fetuses and three deceased neonates.


Assuntos
Arritmias Cardíacas/genética , Doenças Genéticas Ligadas ao Cromossomo X/genética , Gigantismo/genética , Glipicanas/genética , Cardiopatias Congênitas/genética , Deficiência Intelectual/genética , Mutação , Humanos , Fenótipo
19.
Brain ; 135(Pt 2): 469-82, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22323514

RESUMO

Cobblestone lissencephaly represents a peculiar brain malformation with characteristic radiological anomalies, defined as cortical dysplasia combined with dysmyelination, dysplastic cerebellum with cysts and brainstem hypoplasia. Cortical dysplasia results from neuroglial overmigration into the arachnoid space, forming an extracortical layer, responsible for agyria and/or 'cobblestone' brain surface and ventricular enlargement. The underlying mechanism is a disruption of the glia limitans, the outermost layer of the brain. Cobblestone lissencephaly is pathognomonic of a continuum of autosomal recessive diseases with cerebral, ocular and muscular deficits, Walker-Warburg syndrome, muscle-eye-brain and Fukuyama muscular dystrophy. Mutations in POMT1, POMT2, POMGNT1, LARGE, FKTN and FKRP genes attributed these diseases to α-dystroglycanopathies. However, studies have not been able to identify causal mutations in the majority of patients and to establish a clear phenotype/genotype correlation. Therefore, we decided to perform a detailed neuropathological survey and molecular screenings in 65 foetal cases selected on the basis of histopathological criteria. After sequencing the six genes of α-dystroglycanopathies, a causal mutation was observed in 66% of cases. On the basis of a ratio of severity, three subtypes clearly emerged. The most severe, which we called cobblestone lissencephaly A, was linked to mutations in POMT1 (34%), POMT2 (8%) and FKRP (1.5%). The least severe, cobblestone lissencephaly C, was linked to POMGNT1 mutations (18%). An intermediary type, cobblestone lissencephaly B, was linked to LARGE mutations (4.5%) identified for the first time in foetuses. We conclude that cobblestone lissencephaly encompasses three distinct subtypes of cortical malformations with different degrees of neuroglial ectopia into the arachnoid space and cortical plate disorganization regardless of gestational age. In the cerebellum, histopathological changes support the novel hypothesis that abnormal lamination arises from a deficiency in granule cells. Our studies demonstrate the positive impact of histoneuropathology on the identification of α-dystroglycanopathies found in 66% of cases, while with neuroimaging criteria and biological values, mutations are found in 32-50% of patients. Interestingly, our morphological classification was central in the orientation of genetic screening of POMT1, POMT2, POMGNT1, LARGE and FKRP. Despite intensive research, one-third of our cases remained unexplained; suggesting that other genes and/or pathways may be involved. This material offers a rich resource for studies on the affected neurodevelopmental processes of cobblestone lissencephaly and on the identification of other responsible gene(s)/pathway(s).


Assuntos
Encéfalo/patologia , Lissencefalia Cobblestone/genética , Lissencefalia Cobblestone/patologia , Distroglicanas/genética , Encéfalo/metabolismo , Lissencefalia Cobblestone/metabolismo , Distroglicanas/metabolismo , Feminino , Feto , Humanos , Recém-Nascido , Masculino , Manosiltransferases/genética , Manosiltransferases/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , N-Acetilglucosaminiltransferases/genética , N-Acetilglucosaminiltransferases/metabolismo , Proteínas/genética , Proteínas/metabolismo
20.
Eur J Hum Genet ; 20(5): 580-3, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22258531

RESUMO

Duane retraction syndrome (DRS) is a rare congenital strabismus condition with genetic heterogeneity. DRS associated with intellectual disability or developmental delay is observed in several genetic diseases: syndromes such as Goldenhar or Wildervanck syndrome and chromosomal anomalies such as 12q12 deletion. We report on the case of a patient with DRS, developmental delay and particular facial features (horizontal and flared eyebrows, long and smooth philtrum, thin upper lip, full lower lip and full cheeks). We identified a duplication of the long arm of chromosome 8 (8q12) with SNP-array. This is the third case of a patient with common clinical features and 8q12 duplication described in the literature. The minimal critical region is 1.2 Mb and encompasses four genes: CA8, RAB2, RLBP1L1 and CHD7. To our knowledge, no information is available in the literature regarding pathological effects caused by to overexpression of these genes. However, loss of function of the CHD7 gene leads to CHARGE syndrome, suggesting a possible role of the overexpression of this gene in the phenotype observed in 8q12 duplication patients. We have observed that patients with 8q12 duplication share a common recognizable phenotype characterized by DRS, developmental delay and facial features. Such data combined to the literature strongly suggest that this entity may define a novel syndrome. We hypothesize that CHD7 duplication is responsible for a part of the features observed in 8q12.2 duplication.


Assuntos
Duplicação Cromossômica , Cromossomos Humanos Par 8/genética , Deficiências do Desenvolvimento/genética , Síndrome da Retração Ocular/genética , Anormalidades Múltiplas/genética , Pré-Escolar , Humanos , Masculino , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA