Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Mais filtros

Base de dados
Intervalo de ano de publicação
Proc Natl Acad Sci U S A ; 119(10): e2107720119, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35238640


SignificanceUnderstanding the drivers of South Asian monsoon intensity is pivotal for improving climate forecasting under global warming scenarios. Solar insolation is assumed to be the dominant driver of monsoon variability in warm climate regimes, but this has not been verified by proxy data. We report a South Asian monsoon rainfall record spanning the last ∼130 kyr in the Ganges-Brahmaputra-Meghna river catchment. Our multiproxy data reveal that the South Asian monsoon was weaker during the Last Interglacial (130 to 115 ka)-despite higher insolation-than during the Holocene (11.6 ka to present), thus questioning the widely accepted model assumption. Our work implies that Indian Ocean warming may increase the occurrence of severe monsoon failures in South Asia.

Science ; 375(6576): 101-104, 2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-34990239


Climate change is expected to result in smaller fish size, but the influence of fishing has made it difficult to substantiate the theorized link between size and ocean warming and deoxygenation. We reconstructed the fish community and oceanographic conditions of the most recent global warm period (last interglacial; 130 to 116 thousand years before present) by using sediments from the northern Humboldt Current system off the coast of Peru, a hotspot of small pelagic fish productivity. In contrast to the present-day anchovy-dominated state, the last interglacial was characterized by considerably smaller (mesopelagic and goby-like) fishes and very low anchovy abundance. These small fish species are more difficult to harvest and are less palatable than anchovies, indicating that our rapidly warming world poses a threat to the global fish supply.

Mudança Climática , Ecossistema , Peixes , Sedimentos Geológicos , Oxigênio/análise , Água do Mar , Animais , Tamanho Corporal , Peixes/anatomia & histologia , Oceano Pacífico , Paleontologia , Peru , Água do Mar/química , Temperatura
Sci Rep ; 9(1): 17680, 2019 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-31776367


Instrumental data evidence an accelerating freshwater release from Arctic sea ice export and the Greenland Ice Sheet over the past three decades causing cooling and freshening in the subpolar North Atlantic region. However, evaluating the observed acceleration on a historical oceanic and climatic perspective remains challenging given the short available instrumental time series. Here we provide a marine perspective on the freshwater releases to the ocean since 1850 as reflected in the northern limb of the Subpolar Gyre. Our reconstructions suggest that the recent acceleration tracks back to the 1940s/50s and is unprecedented since 1850. The melting, initiated by the 1920s natural rise in solar irradiance, accelerated in response to a combined effect of natural and anthropogenic forcing factors. We find that Greenland's freshwater discharge has contributed to a nutrient-driven fertilization of the upper ocean and consequently increased the marine primary productivity since the 1940s/50s.