RESUMO
The steric strain around copper(I) in typical [Cu(NNR)2]+ complexes, where NNR is a diimine ligand substituted in α-positions of the nitrogen atoms by R, is known to strongly impact the excited-state properties. Generally speaking, the larger the R, the longer the emission lifetime and the higher the quantum yield. However, the stability of the coordination scaffold can be at stake if the steric strain imposed by R is too large. In this work, we explore a way of fine-tuning the steric strain around Cu(I) to reach a balance between high emission quantum yield and stability in a highly bulky copper(I) complex. Taking stable [Cu(dipp)2]+ and unstable [Cu(dtbp)2]+ (where dipp and dtbp are, respectively, 2,9-diisopropyl-1,10-phenanthroline and 2,9-di-tert-butyl-1,10-phenanthroline) as the boundary of two least and most sterically strained structures, we designed and characterized the nonsymmetrical ligand 2-isopropyl-9-tert-butyl-1,10-phenanthroline (L1) and corresponding complex [Cu(L1)2]+ (Cu1). The key experimental findings are that Cu1 exhibits a rigid tetrahedral geometry in the ground state, close to that of [Cu(dtbp)2]+ and with an intermediate stability between that of [Cu(dipp)2]+ and [Cu(dtbp)2]+. Conversely, the nonsymmetrical nature of ligand L1 leads to a shorter emission lifetime and smaller quantum yield than those of either [Cu(dipp)2]+ or [Cu(dtbp)2]+. This peculiar behavior is rationalized through the in depth analysis of the ultrafast dynamics of the excited state measured with optical transient absorption spectroscopy and theoretical calculations performed on the ground and excited state of Cu1. Our main findings are that the obtained complex is significantly more stable than [Cu(dtbp)2]+ despite the sterically strained coordination sphere. The nonsymmetrical nature of the ligand translates into a strongly distorted structure in the excited state. The distortion can be described as a rocking motion of one ligand, entailing the premature extinction of the excited state via several deactivation channels.
RESUMO
The reductive quenching of photoexcited photosensitizers is a very efficient way to achieve challenging reduction reactions. In this process, the excited photosensitizer is reduced by a sacrificial electron donor. This mechanism is rarely observed with copper(I) bis(diimine) complexes, which are nevertheless acknowledged as very promising photosensitizers. This is due to the fact that they are very poor photooxidants and prove unable to react with common donors once promoted in their excited state. In this article, we evidence the rare reductive quenching cycle with two specially designed copper(I) complexes. These complexes exhibit improved photooxidation power thanks to an optimized coordination sphere made of strongly π-accepting ligands. Reductive quenching of the excited state of the latter complexes with a classical benzimidazoline sacrificial donor is monitored, and reduced complexes are accumulated during prolonged photolysis. Trials to utilize the photogenerated reductive power are presented.
RESUMO
A strategy is presented to improve the excited state reactivity of homoleptic copper-bis(diimine) complexes CuL2 + by increasing the steric bulk around CuI whereas preserving their stability. Substituting the phenanthroline at the 2-position by a phenyl group allows the implementation of stabilizing intramolecular π stacking within the copper complex, whereas tethering a branched alkyl chain at the 9-position provides enough steric bulk to rise the excited state energy E00 . Two novel complexes are studied and compared to symmetrical models. The impact of breaking the symmetry of phenanthroline ligands on the photophysical properties of the complexes is analyzed and rationalized thanks to a combined theoretical and experimental study. The importance of fine-tuning the steric bulk of the N-N chelate in order to stabilize the coordination sphere is demonstrated. Importantly, the excited state reactivity of the newly developed complexes is improved as demonstrated in the frame of a reductive quenching step, evidencing the relevance of our strategy.
RESUMO
The anchoring group of a sensitizer may strongly affect the overall properties and stability of the resulting dye-sensitized solar cells (DSSCs) and dye-sensitized photoelectrosynthetic solar cells (DSPECs). The properties of seven perylene monoimide (PMI) dyes have been comprehensively studied for their immobilization on nanocrystalline NiO film. The PMI dyes differ only by the nature of the anchoring group, which are: carboxylic acid (PMI-CO2 H), phosphonic acid (PMI-PO3 H2 ), acetyl acetone (PMI-acac), pyridine (PMI-Py), aniline (PMI-NH2 ), hydroxyquinoline (PMI-HQ), and dipicolinic acid (PMI-DPA). The dyes are investigated by cyclic voltammetry and spectroelectrochemistry and modeled by TD-DFT quantum chemical calculations. The mode of binding of these anchoring groups is investigated by infrared spectroscopy and the stability of the binding to NiO surface is studied by desorption experiments in acidic and basic media. The phosphonic acid group is found to offer the strongest binding to the NiO surface in terms of stability and dye loading. Finally, a photophysical study by ultrafast transient absorption spectroscopy shows that all dyes inject a hole in NiO with rate constants on a subpicosecond timescale and display similar charge recombination kinetics. The photovoltaic properties of the dyes show that PMI-HQ and PMI-acac give the highest photovoltaic performances, owing to a lower degree of aggregation on the surface.
RESUMO
Three new copper(I) complexes [Cu(LX)2]+(PF6-) (where LX stands for 2,9-dihalo-1,10-phenanthroline and X = Cl, Br, and I) have been synthesized in order to study the impact of halogen substituents tethered in the α position of the chelating nitrogen atoms on their physical properties. The photophysical properties of these new complexes (hereafter named Cu-X) were characterized in both their ground and excited states. Femtosecond ultrafast spectroscopy revealed that early photoinduced processes are faster for Cu-I than for Cu-Cl or Cu-Br, both showing similar behaviors. Their electronic absorption and electrochemical properties are comparable to benchmark [Cu(dmp)2]+ (where dmp stands for 2,9-dimethyl-1,10-phenanthroline); furthermore, their optical features were fully reproduced by time-dependent density functional theory and ab initio molecular dynamics calculations. All three complexes are luminescent at room temperature, showing that halogen atoms bound to positions 2 and 9 of phenanthroline are sufficiently bulky to prevent strong interactions between the excited Cu complexes and solvent molecules in the coordination sphere. Their behavior in the excited state, more specifically the extent of the photoluminescence efficiency and its dependence on the temperature, is, however, strongly dependent on the nature of the halogen. A combination of ultrafast transient absorption spectroscopy, temperature-dependent steady-state fluorescence spectroscopy, and computational chemistry allows one to gain a deeper understanding of the behavior of all three complexes in their excited state.
RESUMO
We prepared a series of four new diketopyrrolopyrroles (DPPs)-based sensitizers that exhibit high-molar extinction coefficients, extended absorption into the long wavelengths, and well-suited photoredox properties to act as sensitizers in p-type dye-sensitized solar cells (p-DSSCs). These new DPP dyes, composed of a thienyl DPP core, are substituted on one end either by a thiophene carboxylic (Th) or a 4,4'-[(phenyl)aza]dibenzoic acid as anchoring group and, on the other extremity, either by a proton or a naphthalene diimide (NDI) moiety. These new dyes were completely characterized by absorption and emission spectroscopy along with electrochemistry and they were modeled by time-dependent DFT (TD-DFT) quantum chemical calculations. The photovoltaic study in p-DSSC with iodine-based electrolyte reveals that the Th-DPP-NDI dye is particularly efficient (Jsc =7.38â mA cm-2 ; Voc =147â mV; FF=0.32; η=0.35 %) and quite active in the low-energy region of the solar spectrum (above 700â nm), where only a few NiO dyes are effective. To illustrate the potential of DPP dyes in photocathodes, we designed a highly efficient tandem DSSC composed of a TiO2 photoanode sensitized by the dye D35 and a NiO photocathode sensitized by Th-DPP-NDI. This tandem DSSC gives the highest performances ever reported (Jsc =6.73â mA cm-2 ; Voc =910â mV; η=4.1 %) and, importantly, the tandem cell outcompetes with the sub-cells.
Assuntos
Corantes/química , Fontes de Energia Elétrica , Níquel/química , Pirróis/química , Energia Solar , Cor , Eletroquímica , Eletrodos , Modelos Moleculares , Conformação Molecular , Teoria Quântica , Titânio/químicaRESUMO
The Z-Scheme function within molecular systems has been rarely reported for solar energy conversion although it offers the possibility to achieve higher efficiency than single photon absorber photosystems due to the use of a wider range of visible light. In this study, we synthesized and investigated the electrochemical and spectroscopic properties of two new dyads based on ruthenium and osmium tris-bipyridine complexes covalently linked via a butane bridge to explore their ability to realize the Z-scheme function once immobilized on TiO2. These dyads can be grafted onto a nanocrystalline TiO2 film via the osmium complex bearing two dicarboxylic acid bipyridine ligands, while the ruthenium complex contains either two unsubstituted bipyridine ancillary ligands (RuH-Os) or two (4,4'-bis-trifluoromethyl-bipyridine) ancillary ligands (RuCF3-Os). Transient absorption spectroscopy studies of the Ru(ii)-Os(iii) dyads with femtosecond and nanosecond lasers were conducted both in solution and on TiO2. For both conditions, the photophysical studies revealed that the MLCT excited state of the ruthenium complex is strongly quenched and predominantly decays by energy transfer to the LMCT of the adjacent Os(iii) complex, in spite of the high driving force for electron transfer. This unexpected result, which is in sharp contrast to previously reported Ru(ii)-Os(iii) dyads, precluded us to achieve the expected Z-scheme function. However, the above results may be a guide for designing new artificial molecular systems reproducing the complex function of a Z-scheme with molecular systems grafted onto a TiO2 mesoporous film.
RESUMO
In a photophysical study, two diketopyrrolopyrrole (DPP)-based sensitizers functionalized with 4-thiophenecarboxylic acid as an anchoring group and a bromo (DPPBr) or dicyanovinyl (DPPCN2) group, and a dyad consisting of a DPP unit linked to a naphthalenediimide group (DPP-NDI), were investigated both in solution and grafted on mesoporous NiO films. Femtosecond transient absorption measurements indicate that ultrafast hole injection occurred predominantly on a timescale of â¼200 fs, whereas the subsequent charge recombination occurred on a surprisingly wide range of timescales, from tens of ps to tens of µs; this kinetic heterogeneity is much greater than is typically observed for dye-sensitized TiO2 or ZnO. Also, in contrast to what is typically observed for dye-sensitized TiO2, there was no significant dependence on the excitation power of the recombination kinetics, which can be explained by the hole density being comparatively higher near the valence band of NiO before excitation. The additional acceptor group in DPP-NDI provided a rapid electron shift and stabilized charge separation up to the µs timescale. This enabled efficient (â¼95%) regeneration of NDI by a Co(III)(dtb)3 electrolyte (dtb = 4,4'-di-tert-butyl-2,2'-bipyridine), according to transient absorption measurements. The regeneration of DPPBr and DPPCN2 by Co(III)(dtb)3 was instead inefficient, as most recombination for these dyes occurred on the sub-ns timescale. The transient spectroscopy data thus corroborated the trend of the published photovoltaic properties of dye-sensitized solar cells (DSSCs) based on these dyes on mesoporous NiO, and show the potential of a design strategy with a secondary acceptor bound to the dye. The study identifies rapid initial recombination between the dye and NiO as the main obstacle to obtaining high efficiencies in NiO-based DSSCs; these recombination components may be overlooked when studies are conducted using only methods with ns resolution or slower.
RESUMO
The oxygenic photosynthesis of green plants, green algae, and cyanobacteria is the major provider of energy-rich compounds in the biosphere. The so-called "Z-scheme" is at the heart of this "engine of life". Two photosystems (photosystem I and II) work in series to build up a higher redox ability than each photosystem alone can provide, which is necessary to drive water oxidation into oxygen and NADP(+) reduction into NADPH with visible light. Here we show a mimic of the Z-scheme with a molecular tetrad. The tetrad Bodipy-NDI-TAPD-Ru is composed of two different dyes-4,4-difluoro-1,3,5,7-tetramethyl-2,6-diethyl-4-bora-3a,4a-diaza-s-indacene (Bodipy) and a Ru(II)(bipyridine)3 (Ru) derivative-which are connected to a naphthalene diimide (NDI) electron acceptor and tetraalkylphenyldiamine (TAPD) playing the role of electron donor. A strong laser pulse excitation of visible light where the two dye molecules (Ru and Bodipy) absorb with equal probability leads to the cooperative formation of a highly energetic charge-separated state composed of an oxidized Bodipy and a reduced Ru. The latter state cannot be reached by one single-photon absorption. The energy of the final charge-separated state (oxidized Bodipy/reduced Ru) in the tetrad lies higher than that in the reference dyads (Bodipy-NDI and TAPD-Ru), leading to the energy efficiency of the tetrad being 47% of the sum of the photon threshold energies. Its lifetime was increased by several orders of magnitude compared to that in the reference dyads Bodipy-NDI and TAPD-Ru, as it passes from about 3 ns in each dyad to 850 ns in the tetrad. The overall quantum yield formation of this extended charge-separated state is estimated to be 24%. Our proof-of-concept result demonstrates the capability to translate a crucial photosynthetic energy conversion principle into man-made molecular systems for solar fuel formation, to obtain products of higher energy content than those produced by a single photon absorption.
Assuntos
Materiais Biomiméticos/química , Compostos de Boro/química , Complexos de Coordenação/química , Diaminas/química , Complexo de Proteína do Fotossistema I/química , Complexo de Proteína do Fotossistema II/química , Rutênio/química , Processos Fotoquímicos , Espectroscopia Fotoeletrônica , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Plantas/metabolismoRESUMO
This study demonstrates that the concept of molecular antenna is a relevant strategy to improve the power conversion efficiency of solid-state dye-sensitized solar cells by extending their spectral sensitivity over a broad region of the solar spectrum. In this work, we have associated a BODIPY antenna to a bi-chromophoric sensitizer made of a squaraine unit linked to a zinc porphyrin by axial ligation onto the zinc. Using steady-state and transient photoluminescence spectroscopy, we demonstrate that efficient energy transfers occur from the antenna to the dyad, extending its visible photosensitivity. We also show that direct electron injection from the antenna to TiO2 is possible. A drastic improvement in the device performance by a factor of three is observed under illumination using the spiro-OMeTAD molecular glass as the solid-state electrolyte, leading to a panchromatic response of the device. The influence of the solid-state hole transporter on the supramolecular assembly is also discussed.
RESUMO
In this joint experimental-theoretical work, we present the synthesis and optical and electrochemical characterization of five new bis-acetylide platinum complex dyes end capped with diphenylpyranylidene moieties, as well as their performances in dye-sensitized solar cells (DSCs). Theoretical calculations relying on Time-Dependent Density Functional Theory (TD-DFT) and a range-separated hybrid show a very good match with experimental data and allow us to quantify the charge-transfer character of each compound. The photoconversion efficiency obtained reaches 4.7% for 8e (see TOC Graphic) with the tri-thiophene segment, which is among the highest efficiencies reported for platinum complexes in DSCs.
RESUMO
Three new cyclometalated iridium complexes were prepared and investigated on nanocrystalline NiO cathodes. Nanosecond transient absorption spectroscopy experiments show they present a surprisingly slow geminate charge recombination upon excitation on NiO, representing thus the first examples of simple sensitizers with such feature. These complexes were used in dye-sensitized solar cells using nanocrystalline NiO film as semiconductor. The long-lived charge separated state of these Ir complexes make them compatible with other redox mediators than I3(-)/I(-), such as a cobalt electrolyte and enable to reach significantly high open circuit voltage.
RESUMO
Using the HETPHEN approach, five new heteroleptic copper(I) complexes composed of a push-pull 4,4'-styryl-6,6'-dimethyl-2,2'-bipyridine ligand and a bulky bis[(2-diphenylphosphino)phenyl]-ether (DPEphos) or a bis2,9-mesityl phenanthroline (Mes2Phen) were prepared and characterized by electronic absorption spectroscopy, electrochemistry, and TD-DFT calculations. These complexes exhibit very intense absorption bands in the visible region with extinction coefficient in the range of 5-7 × 10(4) M(-1) cm(-1). The analysis of the position, intensity and band shape indicates a strong contribution from an intra-ligand charge-transfer transition centered on the styrylbipyridine ligand along with MLCT transitions. These new complexes experimentally demonstrate that good light harvesting properties with bis-diimine copper(I) complexes are a reality if one chooses suitable ligands in the coordination sphere. This constitutes a milestone towards using bis-diimine copper(I) complexes for solar energy conversion (artificial photosynthesis and solar cells).
RESUMO
Two new diketopyrrolopyrrole (DPP) based sensitizers (DPP-Br, DPPCN2) and a novel dyad DPP-NDI (NDI = naphthalene diimide) were synthesized and investigated for use in NiO p-type dye-sensitized solar cells (p-DSCs). The simple push-pull DPP-CN2 gives a promising photoconversion efficiency (PCE) of 0.07% with the iodide/triiodide electrolyte while the PCE of the dyad reaches 0.18% with a cobalt complex as a redox shuttle.
RESUMO
We report here the synthesis and full chemical and physical characterizations of the first stable heteroleptic copper(I)-bis(diimine) complexes designed for implementation in dye sensitized solar cells (DSC). Thanks to the HETPHEN concept, pure and stable heteroleptic copper(I) complexes were isolated. Anchorage of the sensitizers was provided by 2,2'-biquinoline-4,4'-dicarboxylic acid (dcbqH2), while sterically challenged ligands 2,9-dimesityl-1,10-phenanthroline (L0) and N-hexyl-2,9-dimesityl-1,10-phenanthroline-[a:b]imidazo-(4'-dianisylaminophenyl) (L1) were used to complete the copper(I) coordination sphere. The resulting heteroleptic complexes C1 and C2 exhibit a broad MLCT transition spreading over a wide wavelength domain, especially when adsorbed onto nanoparticulate TiO2 photoanodes, providing a rather comprehensive visible light collection. The corresponding DSC were evaluated under AM 1.5 simulated solar light and rather weak performances were obtained owing to small J(sc) and V(oc). This is due to a combination of low extinction coefficient and poor driving forces for the various interfacial processes. However, significant improvements in the performances were monitored upon ageing in the dark, likely due to beneficial reorganization of the dye monolayers. The possibility to isolate stable asymmetric systems paves the way for structurally assisted photo-induced charge injection from the chemisorbed copper(i) based sensitizers into the conduction band of TiO2, through charge vectorialization.
RESUMO
In the context of long-range electron transfer for solar energy conversion, we present the synthesis, photophysical, and computational characterization of two new zinc(II) phthalocyanine oligophenylene-ethynylene based donor-bride-acceptor dyads: ZnPc-OPE-AuP(+) and ZnPc-OPE-C(60). A gold(III) porphyrin and a fullerene has been used as electron accepting moieties, and the results have been compared to a previously reported dyad with a tin(IV) dichloride porphyrin as the electron acceptor (Fortage et al. Chem. Commun. 2007, 4629). The results for ZnPc-OPE-AuP(+) indicate a remarkably strong electronic coupling over a distance of more than 3 nm. The electronic coupling is manifested in both the absorption spectrum and an ultrafast rate for photoinduced electron transfer (k(PET) = 1.0 × 10(12) s(-1)). The charge-shifted state in ZnPc-OPE-AuP(+) recombines with a relatively low rate (k(BET) = 1.0 × 10(9) s(-1)). In contrast, the rate for charge transfer in the other dyad, ZnPc-OPE-C(60), is relatively slow (k(PET) = 1.1 × 10(9) s(-1)), while the recombination is very fast (k(BET) ≈ 5 × 10(10) s(-1)). TD-DFT calculations support the hypothesis that the long-lived charge-shifted state of ZnPc-OPE-AuP(+) is due to relaxation of the reduced gold porphyrin from a porphyrin ring based reduction to a gold centered reduction. This is in contrast to the faster recombination in the tin(IV) porphyrin based system (k(BET) = 1.2 × 10(10) s(-1)), where the excess electron is instead delocalized over the porphyrin ring.
Assuntos
Elétrons , Indóis/química , Compostos Organometálicos/química , Polímeros/química , Transporte de Elétrons , Fulerenos/química , Isoindóis , Modelos Moleculares , Compostos Organoáuricos/química , Porfirinas/química , Análise Espectral , Compostos de ZincoRESUMO
A series of four new push-pull zinc porphyrin-based dyes was synthesised for hybrid photovoltaic solar cells with a view to enhancing the light-harvesting efficiency at approximately 550 nm with a diketopyrrolopyrrole (DPP) unit. The strength of the donor side of the push-pull porphyrin was tuned by affixing the electron-rich 4,4'-dimethoxydiphenylamine group at the meso position of the macrocycle, and the influence of the distance between the semiconductor surface and the porphyrin chromophore was assessed by introducing different π-conjugated spacers. Charge-transfer transitions over great distances were characterised by electronic absorption spectroscopy and DFT calculations. The absorption and photoactivity spectra of the new bichromophoric dyes spans the whole visible spectrum to the red, implying a better light-harvesting efficiency than regular porphyrin as the absorption spectra of DPP and porphyrin complement one another. Photovoltaic conversion efficiencies accordingly increase from 2.40 to 5.19 %. Interestingly, the best overall efficiency was reached with dye 3, which lacks the powerful donating group in the meso position of the porphyrin core. Optical and electrochemical measurements coupled to time dependent (TD)-DFT calculations give insight into the deleterious effect of the 4,4'-dimethoxydiphenylamine unit on the photovoltaic performances, paving the way towards the design of efficient push-pull porphyrin-based sensitizers.
Assuntos
Corantes/química , Fontes de Energia Elétrica , Porfirinas/química , Pirrolidinonas/química , Energia Solar , Absorção , Desenho de Fármacos , Eletrodos , Modelos Moleculares , Conformação Molecular , Porfirinas/síntese química , Teoria Quântica , Titânio/químicaRESUMO
To achieve artificial photosynthesis it is necessary to couple the single-electron event of photoinduced charge separation with the multi-electron reactions of fuel formation and water splitting. Therefore, several rounds of light-induced charge separation are required to accumulate enough redox equivalents at the catalytic sites for the target chemistry to occur, without any sacrificial donors or acceptors other than the catalytic substrates. Herein, we discuss the challenges of such accumulative electron transfer in molecular systems. We present a series of closely related systems base on a Ru(II)-polypyridine photosensitizer with appended triaryl-amine or oligo-triaryl-amine donors, linked to nanoporous TiO2 as the acceptor. One of the systems, based on dye 4, shows efficient accumulative electron transfer in high overall yield resulting in the formation of a two-electron charge-separated state upon successive excitation by two photons. In contrast, the other systems do not show accumulative electron transfer because of different competing reactions. This illustrates the difficulties in designing successful systems for this still largely unexplored type of reaction scheme.
Assuntos
Clorofila/metabolismo , Oxigênio/química , Fotoquímica , Fótons , Fotossíntese , Rutênio/química , Água/química , Clorofila/química , Complexos de Coordenação/química , Complexos de Coordenação/metabolismo , Transporte de Elétrons , Elétrons , Cinética , Luz , Oxirredução/efeitos da radiação , Oxigênio/metabolismo , Fármacos Fotossensibilizantes/química , Rutênio/metabolismo , Eletricidade Estática , Titânio/química , Água/metabolismoRESUMO
A series of perylene dyes with different optical and electronic properties have been used as photosensitizers in NiO-based p-type dye-sensitized solar cells. A key target is to develop dyes that absorb light in the red to near-infrared region of the solar spectrum in order to match photoanodes optically in tandem devices; however, the photocurrent produced was found to decrease dramatically as the absorption maxima of the dye used was varied from 517 to 565 nm and varied strongly with the electrolyte solvent (acetonitrile, propionitrile, or propylene carbonate). To determine the limitations of the energy properties of the dye molecules and to provide guidelines for future sensitizer design, we have determined the redox potentials of the diiodide radical intermediate involved in the charge-transfer reactions in different solvents using photomodulated voltammetry. E°(I(3)(-)/I(2)(â¢-)) (V vs Fe(Cp)(2)(+/0)) = -0.64 for propylene carbonate, -0.82 for acetonitrile, and -0.87 for propionitrile. Inefficient regeneration of the sensitizer appears to be the efficiency-limiting step in the device, and the values presented here will be used to design more efficient dyes, with more cathodic reduction potentials, for photocathodes in tandem dye-sensitized solar cells.
RESUMO
Doping a zinc porphyrin based-sensitizer with antenna molecules, axially held by metallo-supramolecular interactions, enhances the light-harvesting efficiency and the overall photo-conversion efficiency of the solar cells by about 30%.