Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 274
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-34520786

RESUMO

Although determination of structures of biological molecules became a real possibility after the first X-ray analyses of crystals by the William Henry Bragg and his son Lawrence in 1913, the crystal structure determination of globular proteins became a possibility only in 1934 with the demonstration of X-ray diffraction from pepsin by J D Bernal and Dorothy Crowfoot, later Hodgkin, who had realised the importance of maintaining an aqueous environment for proteins in crystals. After a further 20 years of hard work by Max Perutz, John Kendrew and others the structures of haemoglobin and myoglobin emerged. Further innovation resulted in a revolution in X-ray diffraction studies in the 1960s, which focused first on polypeptides with alpha helix, beta strand and collagen polyproline helix structures, described in a review by David Davies in 1965 in the journal Progress in Biophysics, later to become Progress in Biophysics and Molecular Biology. It was followed in 1969 by a further detailed review by Tony North and David Phillips in the same journal on crystal structure a nalyses of globular proteins that successfully emerged soon after that of myoglobin. These included the structure of the first enzyme, lysozyme, followed by structures of chymotrypsin, trypsin, carboxypeptidase and many others. This first resolution revolution in X-ray analysis described in the two reviews is the subject of this retrospective analysis just over five decades later.

2.
Life Sci Alliance ; 4(10)2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34353886

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic caused by the new coronavirus (SARS-CoV-2) is currently responsible for more than 3 million deaths in 219 countries across the world and with more than 140 million cases. The absence of FDA-approved drugs against SARS-CoV-2 has highlighted an urgent need to design new drugs. We developed an integrated model of the human cell and SARS-CoV-2 to provide insight into the virus' pathogenic mechanism and support current therapeutic strategies. We show the biochemical reactions required for the growth and general maintenance of the human cell, first, in its healthy state. We then demonstrate how the entry of SARS-CoV-2 into the human cell causes biochemical and structural changes, leading to a change of cell functions or cell death. A new computational method that predicts 20 unique reactions as drug targets from our models and provides a platform for future studies on viral entry inhibition, immune regulation, and drug optimisation strategies. The model is available in BioModels (https://www.ebi.ac.uk/biomodels/MODEL2007210001) and the software tool, findCPcli, that implements the computational method is available at https://github.com/findCP/findCPcli.


Assuntos
COVID-19/tratamento farmacológico , COVID-19/metabolismo , Desenvolvimento de Medicamentos/métodos , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/metabolismo , COVID-19/epidemiologia , Biologia Computacional/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Modelos Biológicos , Pandemias
3.
4.
Mol Cell ; 81(16): 3400-3409.e3, 2021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-34352203

RESUMO

Non-homologous end joining (NHEJ) is one of two critical mechanisms utilized in humans to repair DNA double-strand breaks (DSBs). Unrepaired or incorrect repair of DSBs can lead to apoptosis or cancer. NHEJ involves several proteins, including the Ku70/80 heterodimer, DNA-dependent protein kinase catalytic subunit (DNA-PKcs), X-ray cross-complementing protein 4 (XRCC4), XRCC4-like factor (XLF), and ligase IV. These core proteins bind DSBs and ligate the damaged DNA ends. However, details of the structural assembly of these proteins remain unclear. Here, we present cryo-EM structures of NHEJ supercomplexes that are composed of these core proteins and DNA, revealing the detailed structural architecture of this assembly. We describe monomeric and dimeric forms of this supercomplex and also propose the existence of alternate dimeric forms of long-range synaptic complexes. Finally, we show that mutational disruption of several structural features within these NHEJ complexes negatively affects DNA repair.


Assuntos
DNA Ligase Dependente de ATP/ultraestrutura , Enzimas Reparadoras do DNA/ultraestrutura , Proteína Quinase Ativada por DNA/ultraestrutura , Proteínas de Ligação a DNA/ultraestrutura , Complexos Multiproteicos/ultraestrutura , Apoptose/genética , Microscopia Crioeletrônica , Quebras de DNA de Cadeia Dupla , Dano ao DNA/genética , Reparo do DNA por Junção de Extremidades/genética , DNA Ligase Dependente de ATP/genética , Reparo do DNA/genética , Enzimas Reparadoras do DNA/genética , Proteína Quinase Ativada por DNA/genética , Proteínas de Ligação a DNA/genética , Humanos , Autoantígeno Ku/genética , Autoantígeno Ku/ultraestrutura , Complexos Multiproteicos/genética , Fosforilação/genética
5.
Methods Mol Biol ; 2361: 263-288, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34236667

RESUMO

Protein-protein interactions (PPIs) are central to cellular functions. Experimental methods for predicting PPIs are well developed but are time and resource expensive and suffer from high false-positive error rates at scale. Computational prediction of PPIs is highly desirable for a mechanistic understanding of cellular processes and offers the potential to identify highly selective drug targets. In this chapter, details of developing a deep learning approach to predicting which residues in a protein are involved in forming a PPI-a task known as PPI site prediction-are outlined. The key decisions to be made in defining a supervised machine learning project in this domain are here highlighted. Alternative training regimes for deep learning models to address shortcomings in existing approaches and provide starting points for further research are discussed. This chapter is written to serve as a companion to developing deep learning approaches to protein-protein interaction site prediction, and an introduction to developing geometric deep learning projects operating on protein structure graphs.

6.
Artigo em Inglês | MEDLINE | ID: mdl-34234921

RESUMO

Viruses often encode proteins that mimic host proteins in order to facilitate infection. Little work has been done to understand the potential mimicry of the SARS-CoV-2, SARS-CoV, and MERS-CoV spike proteins, particularly the receptor-binding motifs, which could be important in determining tropism and druggability of the virus. Peptide and epitope motifs have been detected on coronavirus spike proteins using sequence homology approaches; however, comparing the three-dimensional shape of the protein has been shown as more informative in predicting mimicry than sequence-based comparisons. Here, we use structural bioinformatics software to characterize potential mimicry of the three coronavirus spike protein receptor-binding motifs. We utilize sequence-independent alignment tools to compare structurally known protein models with the receptor-binding motifs and verify potential mimicked interactions with protein docking simulations. Both human and non-human proteins were returned for all three receptor-binding motifs. For example, all three were similar to several proteins containing EGF-like domains: some of which are endogenous to humans, such as thrombomodulin, and others exogenous, such as Plasmodium falciparum MSP-1. Similarity to human proteins may reveal which pathways the spike protein is co-opting, while analogous non-human proteins may indicate shared host interaction partners and overlapping antibody cross-reactivity. These findings can help guide experimental efforts to further understand potential interactions between human and coronavirus proteins.

8.
Brief Bioinform ; 2021 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-34137435

RESUMO

Mutations in hallmark genes are believed to be the main drivers of cancer progression. These mutations are reported in the Catalogue of Somatic Mutations in Cancer (COSMIC). Structural appreciation of where these mutations appear, in protein-protein interfaces, active sites or deoxyribonucleic acid (DNA) interfaces, and predicting the impacts of these mutations using a variety of computational tools are crucial for successful drug discovery and development. Currently, there are 723 genes presented in the COSMIC Cancer Gene Census. Due to the complexity of the gene products, structures of only 87 genes have been solved experimentally with structural coverage between 90% and 100%. Here, we present a comprehensive, user-friendly, web interface (https://cancer-3d.com/) of 714 modelled cancer-related genes, including homo-oligomers, hetero-oligomers, transmembrane proteins and complexes with DNA, ribonucleic acid, ligands and co-factors. Using SDM and mCSM software, we have predicted the impacts of reported mutations on protein stability, protein-protein interfaces affinity and protein-nucleic acid complexes affinity. Furthermore, we also predicted intrinsically disordered regions using DISOPRED3.

9.
ACS Infect Dis ; 7(6): 1666-1679, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-33939919

RESUMO

Coenzyme A (CoA) is a ubiquitous cofactor present in all living cells and estimated to be required for up to 9% of intracellular enzymatic reactions. Mycobacterium tuberculosis (Mtb) relies on its own ability to biosynthesize CoA to meet the needs of the myriad enzymatic reactions that depend on this cofactor for activity. As such, the pathway to CoA biosynthesis is recognized as a potential source of novel tuberculosis drug targets. In prior work, we genetically validated CoaBC as a bactericidal drug target in Mtb in vitro and in vivo. Here, we describe the identification of compound 1f, a small molecule inhibitor of the 4'-phosphopantothenoyl-l-cysteine synthetase (PPCS; CoaB) domain of the bifunctional Mtb CoaBC, and show that this compound displays on-target activity in Mtb. Compound 1f was found to inhibit CoaBC uncompetitively with respect to 4'-phosphopantothenate, the substrate for the CoaB-catalyzed reaction. Furthermore, metabolomic profiling of wild-type Mtb H37Rv following exposure to compound 1f produced a signature consistent with perturbations in pantothenate and CoA biosynthesis. As the first report of a direct small molecule inhibitor of Mtb CoaBC displaying target-selective whole-cell activity, this study confirms the druggability of CoaBC and chemically validates this target.


Assuntos
Mycobacterium tuberculosis , Peptídeo Sintases/antagonistas & inibidores , Coenzima A , Cisteína/análogos & derivados , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/genética , Ácido Pantotênico/análogos & derivados , Peptídeo Sintases/genética
10.
Brief Bioinform ; 2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-34015821

RESUMO

The rapid developments in gene sequencing technologies achieved in the recent decades, along with the expansion of knowledge on the three-dimensional structures of proteins, have enabled the construction of proteome-scale databases of protein models such as the Genome3D and ModBase. Nevertheless, although gene products are usually expressed as individual polypeptide chains, most biological processes are associated with either transient or stable oligomerisation. In the PDB databank, for example, ~40% of the deposited structures contain at least one homo-oligomeric interface. Unfortunately, databases of protein models are generally devoid of multimeric structures. To tackle this particular issue, we have developed ProtCHOIR, a tool that is able to generate homo-oligomeric structures in an automated fashion, providing detailed information for the input protein and output complex. ProtCHOIR requires input of either a sequence or a protomeric structure that is queried against a pre-constructed local database of homo-oligomeric structures, then extensively analyzed using well-established tools such as PSI-Blast, MAFFT, PISA and Molprobity. Finally, MODELLER is employed to achieve the construction of the homo-oligomers. The output complex is thoroughly analyzed taking into account its stereochemical quality, interfacial stabilities, hydrophobicity and conservation profile. All these data are then summarized in a user-friendly HTML report that can be saved or printed as a PDF file. The software is easily parallelizable and also outputs a comma-separated file with summary statistics that can straightforwardly be concatenated as a spreadsheet-like document for large-scale data analyses. As a proof-of-concept, we built oligomeric models for the Mabellini Mycobacterium abscessus structural proteome database. ProtCHOIR can be run as a web-service and the code can be obtained free-of-charge at http://lmdm.biof.ufrj.br/protchoir.

11.
Brief Bioinform ; 2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-34013350

RESUMO

Graph machine learning (GML) is receiving growing interest within the pharmaceutical and biotechnology industries for its ability to model biomolecular structures, the functional relationships between them, and integrate multi-omic datasets - amongst other data types. Herein, we present a multidisciplinary academic-industrial review of the topic within the context of drug discovery and development. After introducing key terms and modelling approaches, we move chronologically through the drug development pipeline to identify and summarize work incorporating: target identification, design of small molecules and biologics, and drug repurposing. Whilst the field is still emerging, key milestones including repurposed drugs entering in vivo studies, suggest GML will become a modelling framework of choice within biomedical machine learning.

12.
J Chem Inf Model ; 61(4): 1981-1988, 2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33848149

RESUMO

Accurate prediction of protein stability upon mutation enables rational engineering of new proteins and insights into protein evolution and monogenetic diseases caused by single-point amino acid substitutions. Many tools have been developed to this aim, ranging from energy-based models to machine-learning methods that use large amounts of experimental data. However, as the methods become more complex, the interpretation of the chemistry underlying the protein stability effects becomes obscure. It is thus of interest to identify the simplest prediction model that retains complete amino acid specific interpretation; for a given number of input descriptors, we expect such a model to be almost universal. In this study, we identify such a limiting model, SimBa, a simple multilinear regression model trained on a substitution-type-balanced experimental data set. The model accounts only for the solvent accessibility of the site, volume difference, and polarity difference caused by mutation. Our results show that this very simple and directly applicable model performs comparably to other much more complex, widely used protein stability prediction methods. This suggests that a hard limit of ∼1 kcal/mol numerical accuracy and an R ∼ 0.5 trend accuracy exists and that new features, such as account of unfolded states, water colocalization, and amino acid correlations, are required to improve accuracy to, e.g., 1/2 kcal/mol.


Assuntos
Proteínas , Substituição de Aminoácidos , Mutação , Estabilidade Proteica , Proteínas/genética , Solventes
13.
Science ; 372(6541)2021 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-33926925

RESUMO

Although almost all mycobacterial species are saprophytic environmental organisms, a few, such as Mycobacterium tuberculosis, have evolved to cause transmissible human infection. By analyzing the recent emergence and spread of the environmental organism M. abscessus through the global cystic fibrosis population, we have defined key, generalizable steps involved in the pathogenic evolution of mycobacteria. We show that epigenetic modifiers, acquired through horizontal gene transfer, cause saltational increases in the pathogenic potential of specific environmental clones. Allopatric parallel evolution during chronic lung infection then promotes rapid increases in virulence through mutations in a discrete gene network; these mutations enhance growth within macrophages but impair fomite survival. As a consequence, we observe constrained pathogenic evolution while person-to-person transmission remains indirect, but postulate accelerated pathogenic adaptation once direct transmission is possible, as observed for M. tuberculosis Our findings indicate how key interventions, such as early treatment and cross-infection control, might restrict the spread of existing mycobacterial pathogens and prevent new, emergent ones.


Assuntos
Doenças Transmissíveis Emergentes/microbiologia , Evolução Molecular , Aptidão Genética , Pulmão/microbiologia , Infecções por Mycobacterium não Tuberculosas/microbiologia , Mycobacterium abscessus/genética , Mycobacterium abscessus/patogenicidade , Pneumonia Bacteriana/microbiologia , Doenças Transmissíveis Emergentes/transmissão , Conjuntos de Dados como Assunto , Epigênese Genética , Transferência Genética Horizontal , Genoma Bacteriano , Humanos , Mutação , Infecções por Mycobacterium não Tuberculosas/transmissão , Pneumonia Bacteriana/transmissão , Virulência/genética
14.
Drug Discov Today ; 26(7): 1569-1573, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33798649

RESUMO

Hansen's disease (HD), or leprosy, continues to be endemic in many parts of the world. Although multidrug therapy (MDT) is successful in curing a large number of patients, some of them abandon it because it is a long-term treatment. Therefore, identification of new drug targets in Mycobacterium leprae is considered of high importance. Here, we introduce an overview of in silico and in vitro studies that might be of help in this endeavor. The essentiality of M. leprae proteins is reviewed with discussion of flux balance analysis, gene expression, and knockout articles. Finally, druggability techniques are proposed for the validation of new M. leprae protein targets (see Fig. 1).

15.
Cell Chem Biol ; 28(6): 835-847.e5, 2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-33662256

RESUMO

BRCA2 controls RAD51 recombinase during homologous DNA recombination (HDR) through eight evolutionarily conserved BRC repeats, which individually engage RAD51 via the motif Phe-x-x-Ala. Using structure-guided molecular design, templated on a monomeric thermostable chimera between human RAD51 and archaeal RadA, we identify CAM833, a 529 Da orthosteric inhibitor of RAD51:BRC with a Kd of 366 nM. The quinoline of CAM833 occupies a hotspot, the Phe-binding pocket on RAD51 and the methyl of the substituted α-methylbenzyl group occupies the Ala-binding pocket. In cells, CAM833 diminishes formation of damage-induced RAD51 nuclear foci; inhibits RAD51 molecular clustering, suppressing extended RAD51 filament assembly; potentiates cytotoxicity by ionizing radiation, augmenting 4N cell-cycle arrest and apoptotic cell death and works with poly-ADP ribose polymerase (PARP)1 inhibitors to suppress growth in BRCA2-wildtype cells. Thus, chemical inhibition of the protein-protein interaction between BRCA2 and RAD51 disrupts HDR and potentiates DNA damage-induced cell death, with implications for cancer therapy.

16.
Prog Biophys Mol Biol ; 161: 1-2, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33684422
17.
BMC Bioinformatics ; 22(1): 88, 2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33632133

RESUMO

BACKGROUND: Prediction of the change in fold stability (ΔΔG) of a protein upon mutation is of major importance to protein engineering and screening of disease-causing variants. Many prediction methods can use 3D structural information to predict ΔΔG. While the performance of these methods has been extensively studied, a new problem has arisen due to the abundance of crystal structures: How precise are these methods in terms of structure input used, which structure should be used, and how much does it matter? Thus, there is a need to quantify the structural sensitivity of protein stability prediction methods. RESULTS: We computed the structural sensitivity of six widely-used prediction methods by use of saturated computational mutagenesis on a diverse set of 87 structures of 25 proteins. Our results show that structural sensitivity varies massively and surprisingly falls into two very distinct groups, with methods that take detailed account of the local environment showing a sensitivity of ~ 0.6 to 0.8 kcal/mol, whereas machine-learning methods display much lower sensitivity (~ 0.1 kcal/mol). We also observe that the precision correlates with the accuracy for mutation-type-balanced data sets but not generally reported accuracy of the methods, indicating the importance of mutation-type balance in both contexts. CONCLUSIONS: The structural sensitivity of stability prediction methods varies greatly and is caused mainly by the models and less by the actual protein structural differences. As a new recommended standard, we therefore suggest that ΔΔG values are evaluated on three protein structures when available and the associated standard deviation reported, to emphasize not just the accuracy but also the precision of the method in a specific study. Our observation that machine-learning methods deemphasize structure may indicate that folded wild-type structures alone, without the folded mutant and unfolded structures, only add modest value for assessing protein stability effects, and that side-chain-sensitive methods overstate the significance of the folded wild-type structure.


Assuntos
Engenharia de Proteínas , Estabilidade Proteica , Proteínas , Mutagênese , Proteínas/genética , Termodinâmica
18.
Structure ; 29(8): 899-912.e4, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-33444527

RESUMO

Resolution advances in cryoelectron microscopy (cryo-EM) now offer the possibility to visualize structural effects of naturally occurring resistance mutations in proteins and also of understanding the binding mechanisms of small drug molecules. In Mycobacterium tuberculosis the multifunctional heme enzyme KatG is indispensable for activation of isoniazid (INH), a first-line pro-drug for treatment of tuberculosis. We present a cryo-EM methodology for structural and functional characterization of KatG and INH resistance variants. The cryo-EM structure of the 161 kDa KatG dimer in the presence of INH is reported to 2.7 Å resolution allowing the observation of potential INH binding sites. In addition, cryo-EM structures of two INH resistance variants, identified from clinical isolates, W107R and T275P, are reported. In combination with electronic absorbance spectroscopy our cryo-EM approach reveals how these resistance variants cause disorder in the heme environment preventing heme uptake and retention, providing insight into INH resistance.

20.
FEBS J ; 288(14): 4382-4393, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33511782

RESUMO

Nonhomologous end joining (NHEJ) is a DNA repair mechanism that religates double-strand DNA breaks to maintain genomic integrity during the entire cell cycle. The Ku70/80 complex recognizes DNA breaks and serves as an essential hub for recruitment of NHEJ components. Here, we describe intramolecular interactions of the Ku70 C-terminal domain, known as the SAP domain. Using single-particle cryo-electron microscopy, mass spectrometric analysis of intermolecular cross-linking and molecular modelling simulations, we captured variable positions of the SAP domain depending on DNA binding. The first position was localized at the DNA aperture in the Ku70/80 apo form but was not observed in the DNA-bound state. The second position, which was observed in both apo and DNA-bound states, was found below the DNA aperture, close to the helical arm of Ku70. The localization of the SAP domain in the DNA aperture suggests a function as a flexible entry gate for broken DNA. DATABASES: EM maps have been deposited in EMDB (EMD-11933). Coordinates have been deposited in Protein Data Bank (PDB 7AXZ). Other data are available from corresponding authors upon a request.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , DNA/química , Autoantígeno Ku/química , Humanos , Conformação Proteica , Domínios Proteicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...