Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Mais filtros

Base de dados
Intervalo de ano de publicação
J Am Chem Soc ; 144(36): 16350-16365, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36040461


All-solid-state batteries based on non-combustible solid electrolytes are promising candidates for safe energy storage systems. In addition, they offer the opportunity to utilize metallic lithium as an anode. However, it has proven to be a challenge to design an electrolyte that combines high ionic conductivity and processability with thermodynamic stability toward lithium. Herein, we report a new highly conducting solid solution that offers a route to overcome these challenges. The Li-P-S ternary was first explored via a combination of high-throughput crystal structure predictions and solid-state synthesis (via ball milling) of the most promising compositions, specifically, phases within the Li3P-Li2S tie line. We systematically characterized the structural properties and Li-ion mobility of the resulting materials by X-ray and neutron diffraction, solid-state nuclear magnetic resonance spectroscopy (relaxometry), and electrochemical impedance spectroscopy. A Li3P-Li2S metastable solid solution was identified, with the phases adopting the fluorite (Li2S) structure with P substituting for S and the extra Li+ ions occupying the octahedral voids and contributing to the ionic transport. The analysis of the experimental data is supported by extensive quantum-chemical calculations of both structural stability, diffusivity, and activation barriers for Li+ transport. The new solid electrolytes show Li-ion conductivities in the range of established materials, while their composition guarantees thermodynamic stability toward lithium metal anodes.

Chem Sci ; 11(48): 13129-13136, 2020 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34094494


Dy-based single-molecule magnets (SMMs) are of great interest due to their ability to exhibit very large thermal barriers to relaxation and therefore high blocking temperatures. One interesting line of investigation is Dy-encapsulating endohedral clusterfullerenes, in which a carbon cage protects magnetic Dy3+ ions against decoherence by environmental noise and allows for the stabilization of bonding and magnetic interactions that would be difficult to achieve in other molecular architectures. Recent studies of such materials have focused on clusters with two Dy atoms, since ferromagnetic exchange between Dy atoms is known to reduce the rate of magnetic relaxation via quantum tunneling. Here, two new dysprosium-containing mixed-metallic sulfide clusterfullerenes, DyScS@C s(6)-C82 and DyScS@C 3v(8)-C82, have been successfully synthesized, isolated and characterized by mass spectrometry, Vis-NIR, cyclic voltammetry, single crystal X-ray diffractometry, and magnetic measurements. Crystallographic analyses show that the conformation of the encapsulated cluster inside the fullerene cages is notably different than in the Dy2X@C s(6)-C82 and Dy2X@C 3v(8)-C82 (X = S, O) analogues. Remarkably, both isomers of DyScS@C82 show open magnetic hysteresis and slow magnetic relaxation, even at zero field. Their magnetic blocking temperatures are around 7.3 K, which are among the highest values reported for clusterfullerene SMMs. The SMM properties of DyScS@C82 far outperform those of the dilanthanide analogues Dy2S@C82, in contrast to the trend observed for carbide and nitride Dy clusterfullerenes.

Chem Sci ; 11(18): 4753-4757, 2020 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-34122931


Reaction of FeBr2 with 1.5 equiv. of LiN[double bond, length as m-dash]CPh2 and 2 equiv. of Zn, in THF, results in the formation of the tetrametallic iron ketimide cluster [Fe4(N[double bond, length as m-dash]CPh2)6] (1) in moderate yield. Formally, two Fe centers in 1 are Fe(i) and two are Fe(ii); however, Mössbauer spectroscopy and SQUID magnetometry suggests that the [Fe4]6+ core of 1 exhibits complete valence electron delocalization, with a thermally-persistent spin ground state of S = 7. AC and DC SQUID magnetometry reveals the presence of slow magnetic relaxation in 1, indicative of single-molecule magnetic (SMM) behaviour with a relaxation barrier of U eff = 29 cm-1. Remarkably, very little quantum tunnelling or Raman relaxation is observed down to 1.8 K, which leads to an open hysteresis loop and long relaxation times (up to 34 s at 1.8 K and zero field and 440 s at 1.67 kOe). These results suggest that transition metal ketimide clusters represent a promising avenue to create long-lifetime single molecule magnets.

ACS Appl Mater Interfaces ; 11(45): 42280-42287, 2019 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-31682096


Glass and glass-ceramic samples of metastable lithium thiophosphates with compositions of 70Li2S-30P2S5 and Li7P3S11 were controllably prepared by using a rapid assisted-microwave procedure in under 30 min. The rapid preparation times and weak coupling of the evacuated silica ampules with microwave radiation ensure minimal reactivity of the reactants and the container. The microwave-prepared samples display comparable conductivity values with more conventionally prepared (melt quenched) glass and glass-ceramic samples, on the order of 0.1 and 1 mS cm-1 at room temperature, respectively. Rietveld analysis of synchrotron X-ray diffraction data acquired with an internal standard quantitatively yields phase amounts of the glassy and amorphous components, establishing the tunable nature of the microwave preparation. X-ray photoelectron spectroscopy and Raman spectroscopy confirm the composition and the appropriate ratios of isolated and corner-sharing tetrahedra in these semicrystalline systems. Solid-state 7Li nuclear magnetic resonance (NMR) spectroscopy resolves the seven crystallographic Li sites in the crystalline compound into three main environments. The diffusion behavior of these Li environments as obtained from pulsed-field gradient NMR methods can be separated into one slow and one fast component. The rapid and tunable approach to the preparation of high quality "Li7P3S11" samples presented here coupled with detailed structural and compositional analysis opens the door to new and promising metastable solid electrolytes.

Inorg Chem ; 58(24): 16609-16617, 2019 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-31769972


The use of low-temperature solution synthesis followed by a brief annealing step allows metastable single-phase Co3B nanoparticles to be obtained, with sizes ranging from 11 to 22 nm. The particles are ferromagnetic with a saturation magnetization of 91 A m2 kg-1 (corresponding to 1.02 µB/Co) and a coercive field of 0.14 T at 5 K, retaining the semihard magnetic properties of bulk Co3B. They display a magnetic blocking temperature of 695 K and a Curie temperature near 710 K, but the measurement of these high-temperature properties was complicated by decomposition of the particles during heating in the magnetometer. Additionally, the nanoparticles of Co3B were investigated as an electrocatalyst in the oxygen evolution reaction and showed a low onset potential of 1.55 V vs RHE. XPS measurements were performed before and after the electrocatalytic measurements to study the surface of the catalyst, to pinpoint what appear to be the active surface species.

ACS Appl Mater Interfaces ; 10(8): 7208-7213, 2018 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-29457889


Rapid preparation utilizing assisted microwave heating permits significantly shorter preparation times for magnetocaloric compounds in the (Mn,Fe)2(P,Si) family, specifically samples of (Mn,Fe)2-δP0.5Si0.5 with starting compositions of δ = 0, 0.06, and 0.12. To fully understand the effects of processing and composition changes on structure and properties, these materials are characterized using synchrotron powder diffraction, neutron powder diffraction, electron microprobe analysis (EMPA), X-ray fluorescence (XRF), and magnetic measurements. The diffraction analysis reveals that increasing δ results in decreasing amounts of the common Heusler (Mn,Fe)3Si secondary phase. EMPA shows (Mn,Fe)2(P,Si) in all three samples to be Mn and P rich, whereas XRF demonstrates that the bulk material is Mn rich yet P deficient. Increasing δ brings the Mn/Fe and P/Si ratios closer to their starting values. Measurements of magnetic properties show an increase in saturation magnetization and ordering temperature with increasing δ, consistent with the increase in Fe and Si contents. Increasing δ also results in a decrease in thermal hysteresis and an increase in magnetic entropy change, the latter reaching values close to what have been previously reported on samples that take much longer to prepare.