Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Sport Nutr Exerc Metab ; : 1-8, 2020 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-32908019

RESUMO

The consumption of a high-fat meal can induce postprandial lipemia and endothelial dysfunction. The authors assessed the impact of age and physical activity on metabolic and vascular outcomes following meal consumption in healthy adults. The authors recruited four groups: younger active (age 22.1 ± 1.4 years; n = 9), younger inactive (age 22.6 ± 3.7 years; n = 8), older active (age 68.4 ± 7.7 years; n = 8), and older inactive (age 67.7 ± 7.2 years; n = 7). The metabolic outcomes were measured at the baseline and hourly for 6 hr post high-fat meal consumption (12 kcal/kg; 63% fat). Flow-mediated dilation was measured at the baseline, 2 hr, and 4 hr postmeal. The total area under the curve for triglycerides was significantly lower in the more active groups, but did not differ based on age (younger active = 6.5 ± 1.4 mmol/L × 6 hr, younger inactive = 11.7 ± 4.8, older active = 6.8 ± 2.7, older inactive = 12.1 ± 1.7; p = .0004). After adjusting for artery diameter, flow-mediated dilation differed between groups at the baseline (younger active = 4.8 ± 1.6%, younger inactive = 2.5 ± 0.5, older active = 3.4 ± 0.9, older inactive = 2.2 ± 0.4; p < .001) and decreased significantly across groups 4 hr postmeal (mean difference = 0.82; 95% CI [0.02, 1.6]; p = .04). These findings highlight the beneficial effect of regular physical activity on postprandial lipemia, independent of age.

2.
Nutrients ; 11(5)2019 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-31100881

RESUMO

BACKGROUND: Postprandial lipemia (PPL) is a cardiovascular disease risk factor. However, the effects of different fat sources on PPL remain unclear. We aimed to determine the postprandial response in triglycerides (TG) to four dietary fat sources in adults. METHODS: Participants completed four randomized meal trials. For each meal trial, participants (n = 10; 5M/5F) consumed a high-fat meal (HFM) (13 kcal/kg; 61% of total kcal from fat) with the fat source derived from butter, coconut oil, olive oil, or canola oil. Blood was drawn hourly for 6 h post-meal to quantify PPL. RESULTS: Two-way ANOVA of TG revealed a time effect (p < 0.0001), but no time-meal interaction (p = 0.56), or meal effect (p = 0.35). Meal trials did not differ with regard to TG total (p = 0.33) or incremental (p = 0.14) area-under-the-curve. When stratified by sex and the TG response was averaged across meals, two-way ANOVA revealed a time effect (p < 0.0001), time-group interaction (p = 0.0001), and group effect (p = 0.048), with men exhibiting a greater response than women, although this difference could be attributed to the pronounced difference in BMI between men and women within the sample. CONCLUSION: In our sample of young adults, postprandial TG responses to a single HFM comprised of different fat sources did not differ.


Assuntos
Gorduras na Dieta/metabolismo , Ácidos Graxos Monoinsaturados/administração & dosagem , Ácidos Graxos/administração & dosagem , Lipídeos/sangue , Período Pós-Prandial , Adolescente , Adulto , Peso Corporal , Exercício Físico , Feminino , Análise de Alimentos , Humanos , Masculino , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...