Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 731
Filtrar
1.
Nat Genet ; 2019 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-31578528

RESUMO

Elevated serum urate levels cause gout and correlate with cardiometabolic diseases via poorly understood mechanisms. We performed a trans-ancestry genome-wide association study of serum urate in 457,690 individuals, identifying 183 loci (147 previously unknown) that improve the prediction of gout in an independent cohort of 334,880 individuals. Serum urate showed significant genetic correlations with many cardiometabolic traits, with genetic causality analyses supporting a substantial role for pleiotropy. Enrichment analysis, fine-mapping of urate-associated loci and colocalization with gene expression in 47 tissues implicated the kidney and liver as the main target organs and prioritized potentially causal genes and variants, including the transcriptional master regulators in the liver and kidney, HNF1A and HNF4A. Experimental validation showed that HNF4A transactivated the promoter of ABCG2, encoding a major urate transporter, in kidney cells, and that HNF4A p.Thr139Ile is a functional variant. Transcriptional coregulation within and across organs may be a general mechanism underlying the observed pleiotropy between urate and cardiometabolic traits.

2.
Am J Hum Genet ; 105(4): 706-718, 2019 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-31564435

RESUMO

Hemoglobin A1c (HbA1c) is widely used to diagnose diabetes and assess glycemic control in individuals with diabetes. However, nonglycemic determinants, including genetic variation, may influence how accurately HbA1c reflects underlying glycemia. Analyzing the NHLBI Trans-Omics for Precision Medicine (TOPMed) sequence data in 10,338 individuals from five studies and four ancestries (6,158 Europeans, 3,123 African-Americans, 650 Hispanics, and 407 East Asians), we confirmed five regions associated with HbA1c (GCK in Europeans and African-Americans, HK1 in Europeans and Hispanics, FN3K and/or FN3KRP in Europeans, and G6PD in African-Americans and Hispanics) and we identified an African-ancestry-specific low-frequency variant (rs1039215 in HBG2 and HBE1, minor allele frequency (MAF) = 0.03). The most associated G6PD variant (rs1050828-T, p.Val98Met, MAF = 12% in African-Americans, MAF = 2% in Hispanics) lowered HbA1c (-0.88% in hemizygous males, -0.34% in heterozygous females) and explained 23% of HbA1c variance in African-Americans and 4% in Hispanics. Additionally, we identified a rare distinct G6PD coding variant (rs76723693, p.Leu353Pro, MAF = 0.5%; -0.98% in hemizygous males, -0.46% in heterozygous females) and detected significant association with HbA1c when aggregating rare missense variants in G6PD. We observed similar magnitude and direction of effects for rs1039215 (HBG2) and rs76723693 (G6PD) in the two largest TOPMed African American cohorts, and we replicated the rs76723693 association in the UK Biobank African-ancestry participants. These variants in G6PD and HBG2 were monomorphic in the European and Asian samples. African or Hispanic ancestry individuals carrying G6PD variants may be underdiagnosed for diabetes when screened with HbA1c. Thus, assessment of these variants should be considered for incorporation into precision medicine approaches for diabetes diagnosis.

3.
Nat Commun ; 10(1): 4130, 2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31511532

RESUMO

Increased levels of the urinary albumin-to-creatinine ratio (UACR) are associated with higher risk of kidney disease progression and cardiovascular events, but underlying mechanisms are incompletely understood. Here, we conduct trans-ethnic (n = 564,257) and European-ancestry specific meta-analyses of genome-wide association studies of UACR, including ancestry- and diabetes-specific analyses, and identify 68 UACR-associated loci. Genetic correlation analyses and risk score associations in an independent electronic medical records database (n = 192,868) reveal connections with proteinuria, hyperlipidemia, gout, and hypertension. Fine-mapping and trans-Omics analyses with gene expression in 47 tissues and plasma protein levels implicate genes potentially operating through differential expression in kidney (including TGFB1, MUC1, PRKCI, and OAF), and allow coupling of UACR associations to altered plasma OAF concentrations. Knockdown of OAF and PRKCI orthologs in Drosophila nephrocytes reduces albumin endocytosis. Silencing fly PRKCI further impairs slit diaphragm formation. These results generate a priority list of genes and pathways for translational research to reduce albuminuria.

4.
PLoS One ; 14(9): e0221957, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31532792

RESUMO

BACKGROUND: Hypertension (HTN) disproportionately affects African Americans (AAs), who respond better to thiazide diuretics than other antihypertensives. Variants of the APOL1 gene found in AAs are associated with a higher rate of kidney disease and play a complex role in cardiovascular disease. METHODS: AA subjects from four HTN trials (n = 961) (GERA1, GERA2, PEAR1, and PEAR2) were evaluated for blood pressure (BP) response based on APOL1 genotype after 4-9 weeks of monotherapy with thiazides, beta blockers, or candesartan. APOL1 G1 and G2 variants were determined by direct sequencing or imputation. RESULTS: Baseline systolic BP (SBP) and diastolic BP (DBP) levels did not differ based on APOL1 genotype. Subjects with 1-2 APOL1 risk alleles had a greater SBP response to candesartan (-12.2 +/- 1.2 vs -7.5 +/- 1.8 mmHg, p = 0.03; GERA2), and a greater decline in albuminuria with candesartan (-8.3 +/- 3.1 vs +3.7 +/- 4.3 mg/day, p = 0.02). APOL1 genotype did not associate with BP response to thiazides or beta blockers. GWAS was performed to determine associations with BP response to candesartan depending on APOL1 genotype. While no SNPs reached genome wide significance, SNP rs10113352, intronic in CSMD1, predicted greater office SBP response to candesartan (p = 3.7 x 10-7) in those with 1-2 risk alleles, while SNP rs286856, intronic in DPP6, predicted greater office SBP response (p = 3.2 x 10-7) in those with 0 risk alleles. CONCLUSIONS: Hypertensive AAs without overt kidney disease who carry 1 or more APOL1 risk variants have a greater BP and albuminuria reduction in response to candesartan therapy. BP response to thiazides or beta blockers did not differ by APOL1 genotype. Future studies confirming this initial finding in an independent cohort are required.

5.
PLoS Genet ; 15(9): e1008208, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31553721

RESUMO

Variation in steroid hormone levels has wide implications for health and disease. The genes encoding the proteins involved in steroid disposition represent key determinants of interindividual variation in steroid levels and ultimately, their effects. Beginning with metabolomic data from genome-wide association studies (GWAS), we observed that genetic variants in the orphan transporter, SLC22A24 were significantly associated with levels of androsterone glucuronide and etiocholanolone glucuronide (sentinel SNPs p-value <1x10-30). In cells over-expressing human or various mammalian orthologs of SLC22A24, we showed that steroid conjugates and bile acids were substrates of the transporter. Phylogenetic, genomic, and transcriptomic analyses suggested that SLC22A24 has a specialized role in the kidney and appears to function in the reabsorption of organic anions, and in particular, anionic steroids. Phenome-wide analysis showed that functional variants of SLC22A24 are associated with human disease such as cardiovascular diseases and acne, which have been linked to dysregulated steroid metabolism. Collectively, these functional genomic studies reveal a previously uncharacterized protein involved in steroid homeostasis, opening up new possibilities for SLC22A24 as a pharmacological target for regulating steroid levels.

6.
Circulation ; 140(8): 645-657, 2019 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-31424985

RESUMO

BACKGROUND: DNA methylation is implicated in coronary heart disease (CHD), but current evidence is based on small, cross-sectional studies. We examined blood DNA methylation in relation to incident CHD across multiple prospective cohorts. METHODS: Nine population-based cohorts from the United States and Europe profiled epigenome-wide blood leukocyte DNA methylation using the Illumina Infinium 450k microarray, and prospectively ascertained CHD events including coronary insufficiency/unstable angina, recognized myocardial infarction, coronary revascularization, and coronary death. Cohorts conducted race-specific analyses adjusted for age, sex, smoking, education, body mass index, blood cell type proportions, and technical variables. We conducted fixed-effect meta-analyses across cohorts. RESULTS: Among 11 461 individuals (mean age 64 years, 67% women, 35% African American) free of CHD at baseline, 1895 developed CHD during a mean follow-up of 11.2 years. Methylation levels at 52 CpG (cytosine-phosphate-guanine) sites were associated with incident CHD or myocardial infarction (false discovery rate<0.05). These CpGs map to genes with key roles in calcium regulation (ATP2B2, CASR, GUCA1B, HPCAL1), and genes identified in genome- and epigenome-wide studies of serum calcium (CASR), serum calcium-related risk of CHD (CASR), coronary artery calcified plaque (PTPRN2), and kidney function (CDH23, HPCAL1), among others. Mendelian randomization analyses supported a causal effect of DNA methylation on incident CHD; these CpGs map to active regulatory regions proximal to long non-coding RNA transcripts. CONCLUSION: Methylation of blood-derived DNA is associated with risk of future CHD across diverse populations and may serve as an informative tool for gaining further insight on the development of CHD.

8.
J Am Soc Nephrol ; 30(10): 2027-2036, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31383730

RESUMO

BACKGROUND: Two coding variants in the apo L1 gene (APOL1) are strongly associated with kidney disease in blacks. Kidney disease itself increases the risk of cardiovascular disease, but whether these variants have an independent direct effect on the risk of cardiovascular disease is unclear. Previous studies have had inconsistent results. METHODS: We conducted a two-stage individual participant data meta-analysis to assess the association of APOL1 kidney-risk variants with adjudicated cardiovascular disease events and death, independent of kidney measures. The analysis included 21,305 blacks from eight large cohorts. RESULTS: Over 8.9±5.0 years of follow-up, 2076 incident cardiovascular disease events occurred in the 16,216 participants who did not have cardiovascular disease at study enrollment. In fully-adjusted analyses, individuals possessing two APOL1 kidney-risk variants had similar risk of incident cardiovascular disease (coronary heart disease, myocardial infarction, stroke and heart failure; hazard ratio 1.11, 95% confidence interval, 0.96 to 1.28) compared to individuals with zero or one kidney-risk variant. The risk of coronary heart disease, myocardial infarction, stroke and heart failure considered individually was also comparable by APOL1 genotype. APOL1 genotype was also not associated with death. There was no difference in adjusted associations by level of kidney function, age, diabetes status, or body-mass index. CONCLUSIONS: In this large, two-stage individual participant data meta-analysis, APOL1 kidney-risk variants were not associated with incident cardiovascular disease or death independent of kidney measures.

9.
J Am Heart Assoc ; 8(16): e013115, 2019 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-31423876

RESUMO

BackgroundThere exists a wide interindividual variability in blood pressure (BP) response to ß1-blockers. To identify the genetic determinants of this variability, we performed a pharmacogenomic genome-wide meta-analysis of genetic variants influencing ß1-blocker BP response.Methods and ResultsGenome-wide association analysis for systolic BP and diastolic BP response to ß1-blockers from 5 randomized clinical trials consisting of 1254 patients with hypertension of European ancestry were combined in meta-analysis and single nucleotide polymorphisms (SNPs) with P<10-4 were tested for replication in 2 independent randomized clinical trials of ß1-blocker-treated patients of European ancestry (n=1552). Regions harboring the replicated SNPs were validated in a ß1-blocker-treated black cohort from 2 randomized clinical trials (n=315). A missense SNP rs28404156 in BST1 was associated with systolic BP response to ß1-blockers in the discovery meta-analysis (P=9.33×10-5, ß=-3.21 mm Hg) and replicated at Bonferroni significance (P=1.85×10-4, ß=-4.86 mm Hg) in the replication meta-analysis with combined meta-analysis approaching genome-wide significance (P=2.18×10-7). This SNP in BST1 is in linkage disequilibrium with several SNPs with putative regulatory functions in nearby genes, including CD38, FBXL5, and FGFBP1, all of which have been implicated in BP regulation. SNPs in this genetic region were also associated with BP response in the black cohort.ConclusionsData from randomized clinical trials of 8 European ancestry and 2 black cohorts support the assumption that BST1 containing locus on chromosome 4 is associated with ß1-blocker BP response. Given the previous associations of this region with BP, this is a strong candidate region for future functional studies and potential use in precision medicine approaches for BP management and risk prediction.

11.
PLoS One ; 14(6): e0218115, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31242253

RESUMO

AIMS: Statin-related myopathy (SRM), which includes rhabdomyolysis, is an uncommon but important adverse drug reaction because the number of people prescribed statins world-wide is large. Previous association studies of common genetic variants have had limited success in identifying a genetic basis for this adverse drug reaction. We conducted a multi-site whole-exome sequencing study to investigate whether rare coding variants confer an increased risk of SRM. METHODS AND RESULTS: SRM 3-5 cases (N = 505) and statin treatment-tolerant controls (N = 2047) were recruited from multiple sites in North America and Europe. SRM 3-5 was defined as symptoms consistent with muscle injury and an elevated creatine phosphokinase level >4 times upper limit of normal without another likely cause of muscle injury. Whole-exome sequencing and variant calling was coordinated from two analysis centres, and results of single-variant and gene-based burden tests were meta-analysed. No genome-wide significant associations were identified. Given the large number of cases, we had 80% power to identify a variant with minor allele frequency of 0.01 that increases the risk of SRM 6-fold at genome-wide significance. CONCLUSIONS: In this large whole-exome sequencing study of severe statin-related muscle injury conducted to date, we did not find evidence that rare coding variants are responsible for this adverse drug reaction. Larger sample sizes would be required to identify rare variants with small effects, but it is unclear whether such findings would be clinically actionable.

13.
Nat Genet ; 51(6): 957-972, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31152163

RESUMO

Chronic kidney disease (CKD) is responsible for a public health burden with multi-systemic complications. Through trans-ancestry meta-analysis of genome-wide association studies of estimated glomerular filtration rate (eGFR) and independent replication (n = 1,046,070), we identified 264 associated loci (166 new). Of these, 147 were likely to be relevant for kidney function on the basis of associations with the alternative kidney function marker blood urea nitrogen (n = 416,178). Pathway and enrichment analyses, including mouse models with renal phenotypes, support the kidney as the main target organ. A genetic risk score for lower eGFR was associated with clinically diagnosed CKD in 452,264 independent individuals. Colocalization analyses of associations with eGFR among 783,978 European-ancestry individuals and gene expression across 46 human tissues, including tubulo-interstitial and glomerular kidney compartments, identified 17 genes differentially expressed in kidney. Fine-mapping highlighted missense driver variants in 11 genes and kidney-specific regulatory variants. These results provide a comprehensive priority list of molecular targets for translational research.


Assuntos
Estudos de Associação Genética/métodos , Predisposição Genética para Doença , Locos de Características Quantitativas , Característica Quantitativa Herdável , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/fisiopatologia , Mapeamento Cromossômico , Grupo com Ancestrais do Continente Europeu , Estudo de Associação Genômica Ampla , Taxa de Filtração Glomerular , Humanos , Padrões de Herança , Testes de Função Renal , Fenótipo , Polimorfismo de Nucleotídeo Único , Insuficiência Renal Crônica/urina , Uromodulina/urina
14.
Am J Epidemiol ; 188(6): 991-1012, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-31155658

RESUMO

The Consortium of Metabolomics Studies (COMETS) was established in 2014 to facilitate large-scale collaborative research on the human metabolome and its relationship with disease etiology, diagnosis, and prognosis. COMETS comprises 47 cohorts from Asia, Europe, North America, and South America that together include more than 136,000 participants with blood metabolomics data on samples collected from 1985 to 2017. Metabolomics data were provided by 17 different platforms, with the most frequently used labs being Metabolon, Inc. (14 cohorts), the Broad Institute (15 cohorts), and Nightingale Health (11 cohorts). Participants have been followed for a median of 23 years for health outcomes including death, cancer, cardiovascular disease, diabetes, and others; many of the studies are ongoing. Available exposure-related data include common clinical measurements and behavioral factors, as well as genome-wide genotype data. Two feasibility studies were conducted to evaluate the comparability of metabolomics platforms used by COMETS cohorts. The first study showed that the overlap between any 2 different laboratories ranged from 6 to 121 metabolites at 5 leading laboratories. The second study showed that the median Spearman correlation comparing 111 overlapping metabolites captured by Metabolon and the Broad Institute was 0.79 (interquartile range, 0.56-0.89).

15.
Nature ; 570(7762): 514-518, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31217584

RESUMO

Genome-wide association studies (GWAS) have laid the foundation for investigations into the biology of complex traits, drug development and clinical guidelines. However, the majority of discovery efforts are based on data from populations of European ancestry1-3. In light of the differential genetic architecture that is known to exist between populations, bias in representation can exacerbate existing disease and healthcare disparities. Critical variants may be missed if they have a low frequency or are completely absent in European populations, especially as the field shifts its attention towards rare variants, which are more likely to be population-specific4-10. Additionally, effect sizes and their derived risk prediction scores derived in one population may not accurately extrapolate to other populations11,12. Here we demonstrate the value of diverse, multi-ethnic participants in large-scale genomic studies. The Population Architecture using Genomics and Epidemiology (PAGE) study conducted a GWAS of 26 clinical and behavioural phenotypes in 49,839 non-European individuals. Using strategies tailored for analysis of multi-ethnic and admixed populations, we describe a framework for analysing diverse populations, identify 27 novel loci and 38 secondary signals at known loci, as well as replicate 1,444 GWAS catalogue associations across these traits. Our data show evidence of effect-size heterogeneity across ancestries for published GWAS associations, substantial benefits for fine-mapping using diverse cohorts and insights into clinical implications. In the United States-where minority populations have a disproportionately higher burden of chronic conditions13-the lack of representation of diverse populations in genetic research will result in inequitable access to precision medicine for those with the highest burden of disease. We strongly advocate for continued, large genome-wide efforts in diverse populations to maximize genetic discovery and reduce health disparities.

16.
Genet Epidemiol ; 43(7): 776-785, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31218750

RESUMO

Nontraditional glycemic biomarkers, including fructosamine, glycated albumin, and 1,5-anhydroglucitol (1,5-AG) are potential alternatives or complement to traditional measures of hyperglycemia. Genetic variants are associated with these biomarkers, but the heritability, or extent to which genetics control their variation, is not known. We estimated pedigree-based, SNP-based, and bivariate heritabilities for traditional glycemic biomarkers (fasting glucose, HbA1c), and nontraditional biomarkers (fructosamine, glycated albumin, 1,5-AG) among white participants in the Atherosclerosis Risk in Communities (ARIC) Study (N = 400 first-degree relatives from sibships, N = 5,575 unrelated individuals). Pedigree-based heritabilities (representing heritability from the entire genome) for nontraditional biomarkers were substantial (0.44-0.55) and comparable to HbA1c (0.34); the fasting glucose estimate was nonsignificant. SNP-based heritabilities (representing heritability from common variants) were lower than pedigree-based heritabilities for all biomarkers. Bivariate heritabilities showed shared genetics between fructosamine and glycated albumin (0.46 pedigree-based, 1.00 SNP-based) and glycated albumin and 1,5-AG (0.50 pedigree-based, 0.47 SNP-based). Genetic factors contribute to a considerable proportion of the variance of fructosamine, glycated albumin, and 1,5-AG and a portion of this heritability likely comes from common variants.

17.
Am J Hum Genet ; 105(1): 132-150, 2019 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-31230720

RESUMO

Arthrogryposis is a clinical finding that is present either as a feature of a neuromuscular condition or as part of a systemic disease in over 400 Mendelian conditions. The underlying molecular etiology remains largely unknown because of genetic and phenotypic heterogeneity. We applied exome sequencing (ES) in a cohort of 89 families with the clinical sign of arthrogryposis. Additional molecular techniques including array comparative genomic hybridization (aCGH) and Droplet Digital PCR (ddPCR) were performed on individuals who were found to have pathogenic copy number variants (CNVs) and mosaicism, respectively. A molecular diagnosis was established in 65.2% (58/89) of families. Eleven out of 58 families (19.0%) showed evidence for potential involvement of pathogenic variation at more than one locus, probably driven by absence of heterozygosity (AOH) burden due to identity-by-descent (IBD). RYR3, MYOM2, ERGIC1, SPTBN4, and ABCA7 represent genes, identified in two or more families, for which mutations are probably causative for arthrogryposis. We also provide evidence for the involvement of CNVs in the etiology of arthrogryposis and for the idea that both mono-allelic and bi-allelic variants in the same gene cause either similar or distinct syndromes. We were able to identify the molecular etiology in nine out of 20 families who underwent reanalysis. In summary, our data from family-based ES further delineate the molecular etiology of arthrogryposis, yielded several candidate disease-associated genes, and provide evidence for mutational burden in a biological pathway or network. Our study also highlights the importance of reanalysis of individuals with unsolved diagnoses in conjunction with sequencing extended family members.

18.
Proc Natl Acad Sci U S A ; 116(22): 10636-10645, 2019 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-31068470

RESUMO

The rationale for genome-wide association study (GWAS) results is sequence variation in cis-regulatory elements (CREs) modulating a target gene's expression as the major cause of trait variation. To understand the complete molecular landscape of one of these GWAS loci, we performed in vitro reporter screens in cardiomyocyte cell lines for CREs overlapping nearly all common variants associated with any of five independent QT interval (QTi)-associated GWAS hits at the SCN5A-SCN10A locus. We identified 13 causal CRE variants using allelic reporter activity, cardiomyocyte nuclear extract-based binding assays, overlap with human cardiac tissue DNaseI hypersensitive regions, and predicted impact of sequence variants on DNaseI sensitivity. Our analyses identified at least one high-confidence causal CRE variant for each of the five sentinel hits that could collectively predict SCN5A cardiac gene expression and QTi association. Although all 13 variants could explain SCN5A gene expression, the highest statistical significance was obtained with seven variants (inclusive of the five above). Thus, multiple, causal, mutually associated CRE variants can underlie GWAS signals.

19.
Arterioscler Thromb Vasc Biol ; 39(7): 1475-1482, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31092011

RESUMO

Objective- Alterations in the serum metabolome may be detectable in at-risk individuals before the onset of coronary heart disease (CHD). Identifying metabolomic signatures associated with CHD may provide insight into disease pathophysiology and prevention. Approach and Results- Metabolomic profiling (chromatography-mass spectrometry) was performed in 2232 African Americans and 1366 European Americans from the ARIC study (Atherosclerosis Risk in Communities). We applied Cox regression with least absolute shrinkage and selection operator to select metabolites associated with incident CHD. A metabolite risk score was constructed to evaluate whether the metabolite risk score predicted CHD risk beyond traditional risk factors. After 30 years of follow-up, we observed 633 incident CHD cases. Thirty-two metabolites were selected by least absolute shrinkage and selection operator to be associated with CHD, and 19 of the 32 showed significant individual associations with CHD, including a sugar substitute, erythritol. Theophylline (hazard ratio [95% CI] =1.16 [1.09-1.25]) and gamma-linolenic acid (hazard ratio [95% CI] =0.89 [0.81-0.97]) showed the greatest positive and negative associations with CHD, respectively. A 1 SD greater standardized metabolite risk score was associated with a 1.37-fold higher risk of CHD (hazard ratio [95% CI] =1.37 [1.27-1.47]). Adding the metabolite risk score to the traditional risk factors significantly improved model predictive performance (30-year risk prediction: Δ C statistics [95% CI] =0.016 [0.008-0.024], continuous net reclassification index [95% CI] =0.522 [0.480-0.556], integrated discrimination index [95% CI] =0.038 [0.019-0.065]). Conclusions- We identified 19 metabolites from known and novel metabolic pathways that collectively improved CHD risk prediction. Visual Overview- An online visual overview is available for this article.

20.
Biom J ; 61(4): 934-954, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31058353

RESUMO

A weighted quantile sum (WQS) regression has been used to assess the associations between environmental exposures and health outcomes. However, the currently available WQS approach, which is based on additive effects, does not allow exploring for potential interactions of exposures with other covariates in relation to a health outcome. In addition, the current WQS cannot account for clustering, thus it may not be valid for analysis of clustered data. We propose a generalized WQS approach that can assess interactions by estimating stratum-specific weights of exposures in a mixture, while accounting for potential clustering effect of matched pairs of cases and controls as well as censored exposure data due to being below the limits of detection. The performance of the proposed method in identifying interactions is evaluated through simulations based on various scenarios of correlation structures among the exposures and with an outcome. We also assess how well the proposed method performs in the presence of the varying levels of censoring in exposures. Our findings from the simulation study show that the proposed method outperforms the traditional WQS, as indicated by higher power of detecting interactions. We also find no strong evidence that the proposed method falsely identifies interactions when there are no true interactive effects. We demonstrate application of the proposed method to real data from the Epidemiological Research on Autism Spectrum Disorder (ASD) in Jamaica (ERAJ) by examining interactions between exposure to manganese and glutathione S-transferase family gene, GSTP1 in relation to ASD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA