Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 466
Filtrar
1.
Cortex ; 139: 99-115, 2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33857770

RESUMO

Although executive dysfunction is the characteristic cognitive marker of behavioral variant frontotemporal dementia (bvFTD), episodic memory deficits are relatively common, and may be present even during the prodromal disease phase. In a cohort of mutation carriers with mild behavioral and/or cognitive symptoms consistent with prodromal bvFTD, we aimed to investigate patterns of performance on an abbreviated list learning task, with a particular focus on recognition memory. We further aimed to characterize the cognitive prodromes associated with the three major genetic causes of frontotemporal dementia, as emerging evidence suggests there may be subtle differences in cognitive profiles among carriers of different genetic mutations. Participants included 57 carriers of a pathogenic mutation in microtubule-associated protein tau (MAPT, N = 23), or progranulin (GRN, N = 15), or a or a hexanucleotide repeat expansion in chromosome 9 open reading frame 72 (C9orf72, N = 19), with mild cognitive and/or behavioral symptoms consistent with prodromal bvFTD. Familial non-carriers were included as controls (N = 143). All participants completed a comprehensive neuropsychological examination, including an abbreviated list learning test assessing episodic memory recall and recognition. MAPT mutation carriers performed worse than non-carriers in terms of list recall, and had difficulty discriminating targets from distractors on the recognition memory task, primarily due to the endorsement of distractors as targets. MAPT mutation carriers also showed nonverbal episodic memory and semantic memory dysfunction (object naming). GRN mutation carriers were variable in performance and overall the most dysexecutive. Slowed psychomotor speed was evident in C9orf72 repeat expansion carriers. Identifying the earliest cognitive indicators of bvFTD is of critical clinical and research importance. List learning may be a sensitive cognitive marker for incipient dementia in MAPT and potentially a subset of GRN carriers. Our results highlight that distinct cognitive profiles may be evident in carriers of the three disease-causing genes during the prodromal disease stage.

2.
Brain ; 2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33889947

RESUMO

To examine the length of a hexanucleotide expansion in C9orf72, which represents the most frequent genetic cause of frontotemporal lobar degeneration and motor neuron disease, we employed a targeted amplification-free long-read sequencing technology: No-Amp sequencing. In our cross-sectional study, we assessed cerebellar tissue from 28 well-characterized C9orf72 expansion carriers. We obtained 3507 on-target circular consensus sequencing reads, of which 814 bridged the C9orf72 repeat expansion (23%). Importantly, we observed a significant correlation between expansion sizes obtained using No-Amp sequencing and Southern blotting (P = 5.0 × 10-4). Interestingly, we also detected a significant survival advantage for individuals with smaller expansions (P = 0.004). Additionally, we uncovered that smaller expansions were significantly associated with higher levels of C9orf72 transcripts containing intron 1b (P = 0.003), poly(GP) proteins (P = 1.3 × 10- 5), and poly(GA) proteins (P = 0.005). Thorough examination of the composition of the expansion revealed that its GC content was extremely high (median: 100%) and that it was mainly composed of GGGGCC repeats (median: 96%), suggesting that expanded C9orf72 repeats are quite pure. Taken together, our findings demonstrate that No-Amp sequencing is a powerful tool that enables the discovery of relevant clinicopathological associations, highlighting the important role played by the cerebellar size of the expanded repeat in C9orf72-linked diseases.

3.
J Alzheimers Dis ; 2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33720897

RESUMO

BACKGROUND: The relationship between cerebral microbleeds (CMBs) on hemosiderin-sensitive MRI sequences and cerebral amyloid angiopathy (CAA) remains unclear in population-based participants or in individuals with dementia. OBJECTIVE: To determine whether CMBs on antemortem MRI correlate with CAA. METHODS: We reviewed 54 consecutive participants with antemortem T2 *GRE-MRI sequences and subsequent autopsy. CMBs were quantified on MRIs closest to death. Autopsy CAA burden was quantified in each region including leptomeningeal/cortical and capillary CAA. By clustering approach, we examined the relationship among CAA variables and performed principal component analysis (PCA) for dimension reduction to produce two scores from these 15 interrelated predictors. Hurdle models assessed relationships between principal components and lobar CMBs. RESULTS: MRI-based CMBs appeared in 20/54 (37%). 10 participants had ≥2 lobar-only CMBs. The first two components of the PCA analysis of the CAA variables explained 74% variability. The first rotated component (RPC1) consisted of leptomeningeal and cortical CAA and the second rotated component of capillary CAA (RPC2). Both the leptomeningeal and cortical component and the capillary component correlated with lobar-only CMBs. The capillary CAA component outperformed the leptomeningeal and cortical CAA component in predicting lobar CMBs. Both capillary and the leptomeningeal and cortical components correlated with number of lobar CMBs. CONCLUSION: Capillary and leptomeningeal/cortical scores correlated with lobar CMBs on MRI but lobar CMBs were more closely associated with the capillary component. The capillary component correlated with APOEɛ4, highlighting lobar CMBs as one aspect of CAA phenotypic diversity. More CMBs also increase the probability of underlying CAA.

4.
J Alzheimers Dis ; 80(2): 683-693, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33579840

RESUMO

BACKGROUND: Transactive response DNA-binding protein of 43 kDa (TDP-43) is associated with memory impairment and overall cognitive decline. It is unclear how TDP-43 contributes to the rate of clinical decline. OBJECTIVE: To determine whether cross-sectional and longitudinal cognitive and functional decline are associated with anatomical distribution of TDP-43 in the brain. METHODS: Longitudinal clinical-neuropathologic autopsy cohort study of 385 initially cognitively normal/mildly impaired older adults prospectively followed until death. We investigated how TDP-43, amyloid-ß (Aß), tau neurofibrillary tangles (NFT), Lewy body disease (LBD), age, sex, and genetics are associated with clinical scores and rates of their longitudinal decline. RESULTS: Of 385 participants, 260 (68%) had no TDP-43, 32 (8%) had TDP-43 limited to amygdala, and 93 (24%) had TDP-43 in the hippocampus and beyond. Higher TDP-43 and Braak NFT stages independently were associated with faster decline in global cognition, functional performance measured by Clinical Dementia Rating scale, and naming and episodic memory, whereas older age was associated with slower rate of cognitive, psychiatric, and functional decline. Cross-sectionally the following associations were found: higher TDP-43 and Braak NFT - worse performance; higher Aß burden - worse global cognition, more behavioral changes, the latter also with higher LBD; older age - worse naming, lower frequency of behavioral changes; female sex - more impaired naming and better preserved episodic memory. There were no genetic associations. CONCLUSION: The association of TDP-43 distribution with decline in cognitive and functional performance suggests that TDP-43 is playing a role in the clinical progression to dementia. Further characterization of clinical features associated with TDP-43 can facilitate establishment of antemortem diagnosis.

5.
Neurology ; 96(10): e1402-e1412, 2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33397775

RESUMO

OBJECTIVE: To examine the role of genes identified through genome-wide association studies (GWASs) of Parkinson disease (PD) in the risk of isolated REM sleep behavior disorder (iRBD). METHODS: We fully sequenced 25 genes previously identified in GWASs of PD in a total of 1,039 patients with iRBD and 1,852 controls. The role of rare heterozygous variants in these genes was examined with burden tests. The contribution of biallelic variants was further tested. To examine the potential effect of rare nonsynonymous BST1 variants on the protein structure, we performed in silico structural analysis. Finally, we examined the association of common variants using logistic regression adjusted for age and sex. RESULTS: We found an association between rare heterozygous nonsynonymous variants in BST1 and iRBD (p = 0.0003 at coverage >50× and 0.0004 at >30×), driven mainly by 3 nonsynonymous variants (p.V85M, p.I101V, and p.V272M) found in 22 (1.2%) controls vs 2 (0.2%) patients. All 3 variants seem to be loss-of-function variants with a potential effect on the protein structure and stability. Rare noncoding heterozygous variants in LAMP3 were also associated with iRBD (p = 0.0006 at >30×). We found no association between rare heterozygous variants in the rest of genes and iRBD. Several carriers of biallelic variants were identified, yet there was no overrepresentation in iRBD. CONCLUSION: Our results suggest that rare coding variants in BST1 and rare noncoding variants in LAMP3 are associated with iRBD. Additional studies are required to replicate these results and to examine whether loss of function of BST1 could be a therapeutic target.


Assuntos
ADP-Ribosil Ciclase/genética , Antígenos CD/genética , Glicoproteínas de Membrana Associadas ao Lisossomo/genética , Proteínas de Neoplasias/genética , Transtorno do Comportamento do Sono REM/genética , Idoso , Simulação por Computador , Bases de Dados Genéticas , Feminino , Proteínas Ligadas por GPI/genética , Variação Genética , Estudo de Associação Genômica Ampla , Heterozigoto , Humanos , Masculino , Pessoa de Meia-Idade , Polissonografia , Estrutura Secundária de Proteína , Transtorno do Comportamento do Sono REM/epidemiologia
6.
Neurology ; 2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33408148

RESUMO

OBJECTIVE: To determine the clinical phenotypes associated with the amyloid-ß PET and dopamine transporter imaging (123I-FP-CIT SPECT) findings in mild cognitive impairment (MCI) with the core clinical features of dementia with Lewy bodies (DLB; MCI-LB). METHODS: Patients with MCI who had at least one core clinical feature of DLB (n=34) were grouped into ß-amyloid A+ or A- and 123I-FP-CIT SPECT D+ or D- groups based on previously established abnormality cut points for A+ with Pittsburgh compound-B PET standardized uptake value ratio (PiB SUVR) ≥1.48 and D+ with putamen z-score with DATQUANT < -0.82 on 123I-FP-CIT SPECT. Individual MCI-LB patients fell into one of four groups: A+D+, A+D-, A-D+, or A-D-. Log transformed PiB SUVR and putamen z-score were tested for associations with patient characteristics. RESULTS: The A-D+ biomarker profile was most common (38.2%) followed by A+D+ (26.5%) and A-D- (26.5%). Least common was A+D- biomarker profile (8.8 %). The A+ group was older, had a higher frequency of APOE ε4 carriers, and a lower MMSE score than the A- group. The D+ group was more likely to have probable rapid eye movement sleep behavior disorder. Lower putamen DATQUANT z-scores and lower PiB SUVRs were independently associated with higher Unified Parkinson Disease Rating Scale (UPDRS)-III scores. CONCLUSIONS: A majority of MCI-LB patients are characterized by low amyloid-ß deposition and reduced dopaminergic activity. Amyloid-ß PET and 123I-FP-CIT SPECT are complementary in characterizing clinical phenotypes of patients with MCI-LB.

7.
Neurobiol Aging ; 99: 11-18, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33422890

RESUMO

Reduced nigrostriatal uptake on N-(3-fluoropropyl)-2ß-carbomethoxy-3ß-(4-[123I]iodophenyl) nortropane (123I-FP-CIT) SPECT reflects dopamine dysfunction, while other imaging markers could be complementary when used together. We assessed how well 123I-FP-CIT SPECT differentiates dementia with Lewy bodies (DLBs) from Alzheimer's disease dementia (ADem) and whether multimodal imaging provides additional value. 123I-FP-CIT SPECT, magnetic resonance imaging, [18F]2-fluoro-deoxy-D-glucose-positron emission tomography (PET), and 11C-Pittsburgh compound B (PiB)-PET were assessed in 35 participants with DLBs and 14 participants with ADem (autopsy confirmation in 9 DLBs and 4 ADem). Nigrostriatal dopamine transporter uptake was evaluated with 123I-FP-CIT SPECT using DaTQUANT software. Hippocampal volume was calculated with magnetic resonance imaging, cingulate island sign ratio with FDG-PET, and global cortical PiB retention with PiB-PET. The DaTQUANT z-scores of the putamen showed the highest c-statistic of 0.916 in differentiating DLBs from ADem among the analyzed imaging biomarkers. Adding another imaging modality to 123I-FP-CIT SPECT had c-statistics ranging from 0.968 to 0.975, and 123I-FP-CIT SPECT in combination with 2 other imaging modalities presented c-statistics ranging from 0.987 to 0.996. These findings suggest that multimodal imaging with 123I-FP-CIT SPECT aids in differentiating DLBs and ADem and in detecting comorbid Lewy-related and Alzheimer's disease pathology in patients with DLBs and ADem.

8.
Adv Exp Med Biol ; 1281: 77-92, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33433870

RESUMO

Numerous kindreds with familial frontotemporal lobar degeneration have been linked to mutations in microtubule-associated protein tau (MAPT) or progranulin (GRN) genes. While there are many similarities in the clinical manifestations and associated neuroimaging findings, there are also distinct differences. In this review, we compare and contrast the demographic/inheritance characteristics, histopathology, pathophysiology, clinical aspects, and key neuroimaging findings between those with MAPT and GRN mutations.


Assuntos
Demência Frontotemporal , Degeneração Lobar Frontotemporal , Degeneração Lobar Frontotemporal/diagnóstico por imagem , Degeneração Lobar Frontotemporal/genética , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Mutação , Neuroimagem , Progranulinas/genética , Proteínas tau/genética
10.
Sleep Med ; 79: 107-112, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33486257

RESUMO

OBJECTIVES/BACKGROUND: Most middle-aged and older adult patients with isolated (idiopathic) REM sleep behavior disorder (RBD) eventually develop parkinsonism, dementia with Lewy bodies, or multiple system atrophy. We aimed to describe the current sleep medicine specialist approach toward RBD prognostic counseling, and to determine physician beliefs and characteristics that impact provision of counseling. PATIENTS/METHODS: We surveyed 70 sleep medicine physicians with RBD expertise for demographic information, counseling practices, and their beliefs and understandings concerning the association between RBD and synucleinopathies, among other questions. Responses were summarized by descriptive statistics. RESULTS: Among the 44 respondents (63% response rate), 41 (93.2%) regularly provided prognostic counseling for most RBD patients, but only 31.8% routinely asked about patient preferences on receiving counseling. 41.8% believed that the risk for developing overt synucleinopathy following RBD diagnosis was >80%, but only 15.9% routinely provided this detailed phenoconversion risk estimate to their patients. Most respondents were concerned that RBD prognostic counseling could adversely impact on the patient's and family's mental health. CONCLUSIONS: Most expert RBD sleep clinicians routinely counsel their patients regarding the high risk for phenoconversion to parkinsonism or dementia, yet relatively few routinely ask patients about their preferences for receiving this information, and fewer provide details concerning the known high risk estimates for developing a synucleinopathy. Future research should analyze patients' values and preferences in RBD populations to inform approaches toward shared decision making for RBD prognostic counseling.

11.
Acta Neuropathol Commun ; 8(1): 218, 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33287913

RESUMO

The microtubule-associated protein tau (MAPT) H1 haplotype is the strongest genetic risk factor for corticobasal degeneration (CBD). However, the specific H1 subhaplotype association is not well defined, and it is not clear whether any MAPT haplotypes influence severity of tau pathology or clinical presentation in CBD. Therefore, in the current study we examined 230 neuropathologically confirmed CBD cases and 1312 controls in order to assess associations of MAPT haplotypes with risk of CBD, severity of tau pathology (measured as semi-quantitative scores for coiled bodies, neurofibrillary tangles, astrocytic plaques, and neuropil threads), age of CBD onset, and disease duration. After correcting for multiple testing (P < 0.0026 considered as significant), we confirmed the strong association between the MAPT H2 haplotype and decreased risk of CBD (Odds ratio = 0.26, P = 2 × 10-12), and also observed a novel association between the H1d subhaplotype and an increased CBD risk (Odds ratio = 1.76, P = 0.002). Additionally, although not statistically significant after correcting for multiple testing, the H1c haplotype was associated with a higher risk of CBD (Odds ratio = 1.49, P = 0.009). No MAPT haplotypes were significantly associated with any tau pathology measures, age of CBD onset, or disease duration. Though replication will be important and there is potential that population stratification could have influenced our findings, these results suggest that several MAPT H1 subhaplotypes are primarily responsible for the strong association between MAPT H1 and risk of CBD, but that H1 subhaplotypes are unlikely to play a major role in driving tau pathology or clinical features. Our findings also indicate that similarities in MAPT haplotype risk-factor profile exist between CBD and the related tauopathy progressive supranuclear palsy, with H2, H1d, and H1c displaying associations with both diseases.

12.
Artigo em Inglês | MEDLINE | ID: mdl-33247623

RESUMO

OBJECTIVE: MAPT mutations typically cause behavioral variant frontotemporal dementia with or without parkinsonism. Previous studies have shown that symptomatic MAPT mutation carriers have frontotemporal atrophy, yet studies have shown mixed results as to whether presymptomatic carriers have low gray matter volumes. To elucidate whether presymptomatic carriers have lower structural brain volumes within regions atrophied during the symptomatic phase, we studied a large cohort of MAPT mutation carriers using a voxelwise approach. METHODS: We studied 22 symptomatic carriers (age 54.7 ± 9.1, 13 female) and 43 presymptomatic carriers (age 39.2 ± 10.4, 21 female). Symptomatic carriers' clinical syndromes included: behavioral variant frontotemporal dementia (18), an amnestic dementia syndrome (2), Parkinson's disease (1), and mild cognitive impairment (1). We performed voxel-based morphometry on T1 images and assessed brain volumetrics by clinical subgroup, age, and mutation subtype. RESULTS: Symptomatic carriers showed gray matter atrophy in bilateral frontotemporal cortex, insula, and striatum, and white matter atrophy in bilateral corpus callosum and uncinate fasciculus. Approximately 20% of presymptomatic carriers had low gray matter volumes in bilateral hippocampus, amygdala, and lateral temporal cortex. Within these regions, low gray matter volumes emerged in a subset of presymptomatic carriers as early as their thirties. Low white matter volumes arose infrequently among presymptomatic carriers. INTERPRETATION: A subset of presymptomatic MAPT mutation carriers showed low volumes in mesial temporal lobe, the region ubiquitously atrophied in all symptomatic carriers. With each decade of age, an increasing percentage of presymptomatic carriers showed low mesial temporal volume, suggestive of early neurodegeneration.

13.
Ann Neurol ; 2020 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-33155696

RESUMO

OBJECTIVE: The aim was to analyze the timeline, prevalence, and survival of rapid eye movement (REM) sleep behavior disorder (RBD) in patients who developed alpha-synucleinopathies (Parkinson disease, dementia with Lewy bodies, and Parkinson disease dementia) compared with age- and sex-matched controls in a population-based incident-cohort study. METHODS: We used a population-based, 1991 to 2010 incident-cohort study of alpha-synucleinopathies. A movement-disorder specialist reviewed medical records to confirm diagnoses. RBD was diagnosed by reported dream-enactment symptoms or polysomnography. Probable RBD and polysomnographically confirmed RBD were analyzed separately and combined. RESULTS: Among the 444 incident cases of alpha-synucleinopathy, 86 were clinically diagnosed with RBD (19.8%), including 30 (35%) by polysomnography and 56 (65%) as probable. The prevalence of idiopathic RBD at alpha-synucleinopathy diagnosis was 3.4%, increasing to 23.8% after 15 years. Cumulative lifetime incidence was 53 times greater in alpha-synucleinopathy patients than in controls (odds ratio [OR] = 53.1, 95% confidence interval [CI]: 13.0-217.2, p < 0.0001), higher in dementia with Lewy bodies than in Parkinson disease (OR = 2.57, 95% CI: 1.50-4.40, p = 0.0004), and higher in men than in women with Parkinson disease, dementia with Lewy bodies, or Parkinson disease dementia (OR = 3.70, 95% CI: 2.07-6.62, p < 0.0001), but did not increase mortality risk. INTERPRETATION: Our cohort had RBD incidence of 3.4%. Overall RBD increased to 23.8% after 15 years, with an overall incidence of 2.5 cases per 100 person-years. With 53 times greater lifetime incidence in alpha-synucleinopathy patients than in controls, RBD was more likely to develop in dementia with Lewy bodies than in Parkinson disease or Parkinson disease dementia, and in men than in women, but did not increase mortality risk within our cohort. ANN NEUROL 2020.

14.
Brain ; 143(11): 3463-3476, 2020 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-33150361

RESUMO

Alzheimer's disease is characterized by the presence of amyloid-ß and tau deposition in the brain, hippocampal atrophy and increased rates of hippocampal atrophy over time. Another protein, TAR DNA binding protein 43 (TDP-43) has been identified in up to 75% of cases of Alzheimer's disease. TDP-43, tau and amyloid-ß have all been linked to hippocampal atrophy. TDP-43 and tau have also been linked to hippocampal atrophy in cases of primary age-related tauopathy, a pathological entity with features that strongly overlap with those of Alzheimer's disease. At present, it is unclear whether and how TDP-43 and tau are associated with early or late hippocampal atrophy in Alzheimer's disease and primary age-related tauopathy, whether either protein is also associated with faster rates of atrophy of other brain regions and whether there is evidence for protein-associated acceleration/deceleration of atrophy rates. We therefore aimed to model how these proteins, particularly TDP-43, influence non-linear trajectories of hippocampal and neocortical atrophy in Alzheimer's disease and primary age-related tauopathy. In this longitudinal retrospective study, 557 autopsied cases with Alzheimer's disease neuropathological changes with 1638 ante-mortem volumetric head MRI scans spanning 1.0-16.8 years of disease duration prior to death were analysed. TDP-43 and Braak neurofibrillary tangle pathological staging schemes were constructed, and hippocampal and neocortical (inferior temporal and middle frontal) brain volumes determined using longitudinal FreeSurfer. Bayesian bivariate-outcome hierarchical models were utilized to estimate associations between proteins and volume, early rate of atrophy and acceleration in atrophy rates across brain regions. High TDP-43 stage was associated with smaller cross-sectional brain volumes, faster rates of brain atrophy and acceleration of atrophy rates, more than a decade prior to death, with deceleration occurring closer to death. Stronger associations were observed with hippocampus compared to temporal and frontal neocortex. Conversely, low TDP-43 stage was associated with slower early rates but later acceleration. This later acceleration was associated with high Braak neurofibrillary tangle stage. Somewhat similar, but less striking, findings were observed between TDP-43 and neocortical rates. Braak stage appeared to have stronger associations with neocortex compared to TDP-43. The association between TDP-43 and brain atrophy occurred slightly later in time (∼3 years) in cases of primary age-related tauopathy compared to Alzheimer's disease. The results suggest that TDP-43 and tau have different contributions to acceleration and deceleration of brain atrophy rates over time in both Alzheimer's disease and primary age-related tauopathy.

15.
Mov Disord ; 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33001463

RESUMO

BACKGROUND: There is only partial overlap in the genetic background of isolated rapid-eye-movement sleep behavior disorder (iRBD) and Parkinson's disease (PD). OBJECTIVE: To examine the role of autosomal dominant and recessive PD or atypical parkinsonism genes in the risk of iRBD. METHODS: Ten genes, comprising the recessive genes PRKN, DJ-1 (PARK7), PINK1, VPS13C, ATP13A2, FBXO7, and PLA2G6 and the dominant genes LRRK2, GCH1, and VPS35, were fully sequenced in 1039 iRBD patients and 1852 controls of European ancestry, followed by association tests. RESULTS: We found no association between rare heterozygous variants in the tested genes and risk of iRBD. Several homozygous and compound heterozygous carriers were identified, yet there was no overrepresentation in iRBD patients versus controls. CONCLUSION: Our results do not support a major role for variants in these genes in the risk of iRBD. © 2020 International Parkinson and Movement Disorder Society.

16.
Neuroimage ; 224: 117433, 2020 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-33035667

RESUMO

Altered iron metabolism has been hypothesized to be associated with Alzheimer's disease pathology, and prior work has shown associations between iron load and beta amyloid plaques. Quantitative susceptibility mapping (QSM) is a recently popularized MR technique to infer local tissue susceptibility secondary to the presence of iron as well as other minerals. Greater QSM values imply greater iron concentration in tissue. QSM has been used to study relationships between cerebral iron load and established markers of Alzheimer's disease, however relationships remain unclear. In this work we study QSM signal characteristics and associations between susceptibility measured on QSM and established clinical and imaging markers of Alzheimer's disease. The study included 421 participants (234 male, median age 70 years, range 34-97 years) from the Mayo Clinic Study of Aging and Alzheimer's Disease Research Center; 296 (70%) had a diagnosis of cognitively unimpaired, 69 (16%) mild cognitive impairment, and 56 (13%) amnestic dementia. All participants had multi-echo gradient recalled echo imaging, PiB amyloid PET, and Tauvid tau PET. Variance components analysis showed that variation in cortical susceptibility across participants was low. Linear regression models were fit to assess associations with regional susceptibility. Expected increases in susceptibility were found with older age and cognitive impairment in the deep and inferior gray nuclei (pallidum, putamen, substantia nigra, subthalamic nucleus) (betas: 0.0017 to 0.0053 ppm for a 10 year increase in age, p = 0.03 to <0.001; betas: 0.0021 to 0.0058 ppm for a 5 point decrease in Short Test of Mental Status, p = 0.003 to p<0.001). Effect sizes in cortical regions were smaller, and the age associations were generally negative. Higher susceptibility was significantly associated with higher amyloid PET SUVR in the pallidum and putamen (betas: 0.0029 and 0.0012 ppm for a 20% increase in amyloid PET, p = 0.05 and 0.02, respectively), higher tau PET in the basal ganglia with the largest effect size in the pallidum (0.0082 ppm for a 20% increase in tau PET, p<0.001), and with lower cortical gray matter volume in the medial temporal lobe (0.0006 ppm for a 20% decrease in volume, p = 0.03). Overall, these findings suggest that susceptibility in the deep and inferior gray nuclei, particularly the pallidum and putamen, may be a marker of cognitive decline, amyloid deposition, and off-target binding of the tau ligand. Although iron has been demonstrated in amyloid plaques and in association with neurodegeneration, it is of insufficient quantity to be reliably detected in the cortex using this implementation of QSM.

17.
JAMA Netw Open ; 3(10): e2022847, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33112398

RESUMO

Importance: Several clinical trials are planned for familial forms of frontotemporal lobar degeneration (f-FTLD). Precise modeling of brain atrophy in f-FTLD could improve the power to detect a treatment effect. Objective: To characterize regions and rates of atrophy in the 3 primary f-FTLD genetic groups (MAPT, GRN, and C9orf72) across all disease stages from asymptomatic to dementia. Design, Setting, and Participants: This investigation was a case-control study of participants enrolled in the Advancing Research and Treatment for Frontotemporal Lobar Degeneration or Longitudinal Evaluation of Familial Frontotemporal Dementia studies. The study took place at 18 North American academic medical centers between January 2009 and September 2018. Participants with f-FTLD (n = 100) with a known pathogenic variant (MAPT [n = 28], GRN [n = 33], or C9orf72 [n = 39]) were grouped according to disease stage (ie, Clinical Dementia Rating [CDR] plus National Alzheimer's Coordinating Center [NACC] FTLD module). Included were participants with at least 2 structural magnetic resonance images at presymptomatic (CDR + NACC FTLD = 0 [n = 57]), mild or questionable (CDR + NACC FTLD = 0.5 [n = 15]), or symptomatic (CDR + NACC FTLD = ≥1 [n = 28]) disease stages. The control group included family members of known pathogenic variant carriers who did not carry the pathogenic variant (n = 60). Main Outcomes and Measures: This study fitted bayesian linear mixed-effects models in each voxel of the brain to quantify the rate of atrophy in each of the 3 genes, at each of the 3 disease stages, compared with controls. The study also analyzed rates of clinical decline in each of these groups, as measured by the CDR + NACC FTLD box score. Results: The sample included 100 participants with f-FTLD with a known pathogenic variant (mean [SD] age, 50.48 [13.78] years; 53 [53%] female) and 60 family members of known pathogenic variant carriers who did not carry the pathogenic variant (mean [SD] age, 47.51 [12.43] years; 36 [60%] female). MAPT and GRN pathogenic variants were associated with increased rates of volume loss compared with controls at all stages of disease. In MAPT pathogenic variant carriers, statistically significant regions of accelerated volume loss compared with controls were identified in temporal regions bilaterally in the presymptomatic stage, with global spread in the symptomatic stage. For example, mean [SD] rates of atrophy in the left temporal were -231 [47] mm3 per year during the presymptomatic stage, -381 [208] mm3 per year during the mild stage, and -1485 [1025] mm3 per year during the symptomatic stage (P < .05). GRN pathogenic variant carriers generally had minimal increases in atrophy rates between the presymptomatic and mild stages, with rapid increases in atrophy rates in the symptomatic stages. For example, in the right frontal lobes, annualized volume loss was -267 [81] mm3 per year in the presymptomatic stage and -182 [90] mm3 per year in the mild stage, but -1169 [555] mm3 per year in the symptomatic stage. Compared with the other groups, C9orf72 expansion carriers showed minimal increases in rate of volume loss with disease progression. For example, the mean (SD) annualized rates of atrophy in the right frontal lobe in C9orf72 expansion carriers was -272 (118) mm3 per year in presymptomatic stages, -310 (189) mm3 per year in mildly symptomatic stages, and -251 (145) mm3 per year in symptomatic stages. Conclusions and Relevance: These findings are relevant to clinical trial planning and suggest that the mechanism by which C9orf72 pathogenic variants lead to symptoms may be fundamentally different from the mechanisms associated with other pathogenic variants.

18.
Acta Neuropathol Commun ; 8(1): 172, 2020 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-33092647

RESUMO

Missense variants ABI3_rs616338-T and PLCG2_rs72824905-G were previously associated with elevated or reduced risk of Alzheimer's disease (AD), respectively. Despite reports of associations with other neurodegenerative diseases, there are few studies of these variants in purely neuropathologically diagnosed cohorts. Further, the effect of these mutations on neurodegenerative disease pathologies is unknown. In this study, we tested the effects of ABI3_rs616338-T and PLCG2_rs72824905-G on disease risk in autopsy cohorts comprised of 973 patients diagnosed neuropathologically with Lewy body disease (LBD-NP) and 1040 with progressive supranuclear palsy (PSP), compared to 3351 controls. LBD-NP patients were further categorized as high, intermediate and low likelihood of clinical dementia with Lewy bodies (DLB-CL) based on DLB Consortium criteria. We also tested for association with both Braak neurofibrillary tau tangle (nTotal = 2008, nPSP = 1037, nLBD-NP = 971) and Thal phase amyloid plaque scores (nTotal = 1786, nPSP = 1018, nLBD-NP = 768). Additionally, 841 PSP patients had quantitative tau neuropathology measures that were assessed for genetic associations. There was no statistically significant association with disease risk for either LBD-NP or PSP in our study. LBD intermediate category disease risk was significantly associated with ABI3_rs616338-T (OR = 2.65, 95% CI 1.46-4.83, p = 0.001). PLCG2_rs72824905-G was associated with lower Braak stage (ß = - 0.822, 95% CI - 1.439 to - 0.204, p = 0.009). This effect was more pronounced in the PSP (ß = - 0.995, 95% CI - 1.773 to - 0.218, p = 0.012) than LBD-NP patients (ß = - 0.292, 95% CI - 1.283 to 0.698, p = 0.563). PLCG2_rs72824905-G also showed association with reduced quantitative tau pathology for each lesion type and overall tau burden in PSP (ß = - 0.638, 95% CI - 1.139 to - 0.136, p = 0.013). These findings support a role for PLCG2_rs72824905-G in suppressing tau neuropathology. ABI3_rs616338-T may influence disease risk specifically in the LBD-NP intermediate category comprised of patients with diffuse neocortical or limbic LB, concurrently with moderate or high AD neuropathology, respectively. Our study provides a potential mechanism of action for the missense PLCG2 variant and suggests a differential disease risk effect for ABI3 in a distinct LBD-NP neuropathologic category.

19.
Brain ; 143(10): 3136-3150, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33094327

RESUMO

Clinical trials with anti-tau drugs will need to target individuals at risk of accumulating tau. Our objective was to identify variables available in a research setting that predict future rates of tau PET accumulation separately among individuals who were either cognitively unimpaired or cognitively impaired. All 337 participants had: a baseline study visit with MRI, amyloid PET, and tau PET exams, at least one follow-up tau PET exam; and met clinical criteria for membership in one of two clinical diagnostic groups: cognitively unimpaired (n = 203); or cognitively impaired (n = 134, a combined group of participants with either mild cognitive impairment or dementia with Alzheimer's clinical syndrome). Our primary analyses were in these two clinical groups; however, we also evaluated subgroups dividing the unimpaired group by normal/abnormal amyloid PET and the impaired group by clinical phenotype (mild cognitive impairment, amnestic dementia, and non-amnestic dementia). Linear mixed effects models were used to estimate associations between age, sex, education, APOE genotype, amyloid and tau PET standardized uptake value ratio (SUVR), cognitive performance, cortical thickness, and white matter hyperintensity volume at baseline, and the rate of subsequent tau PET accumulation. Log-transformed tau PET SUVR was used as the response and rates were summarized as annual per cent change. A temporal lobe tau PET meta-region of interest was used. In the cognitively unimpaired group, only higher baseline amyloid PET was a significant independent predictor of higher tau accumulation rates (P < 0.001). Higher rates of tau accumulation were associated with faster rates of cognitive decline in the cognitively unimpaired subgroup with abnormal amyloid PET (P = 0.03), but among the subgroup with normal amyloid PET. In the cognitively impaired group, younger age (P = 0.02), higher baseline amyloid PET (P = 0.05), APOE ε4 (P = 0.05), and better cognitive performance (P = 0.05) were significant independent predictors of higher tau accumulation rates. Among impaired individuals, faster cognitive decline was associated with faster rates of tau accumulation (P = 0.01). While we examined many possible predictor variables, our results indicate that screening of unimpaired individuals for potential inclusion in anti-tau trials may be straightforward because the only independent predictor of high tau rates was amyloidosis. In cognitively impaired individuals, imaging and clinical variables consistent with early onset Alzheimer's disease phenotype were associated with higher rates of tau PET accumulation suggesting this may be a highly advantageous group in which to conduct proof-of-concept clinical trials that target tau-related mechanisms. The nature of the dementia phenotype (amnestic versus non-amnestic) did not affect this conclusion.

20.
Alzheimers Res Ther ; 12(1): 137, 2020 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-33121510

RESUMO

Lewy body dementia (LBD), including dementia with Lewy bodies and Parkinson's disease dementia, affects over a million people in the USA and has a substantial impact on patients, caregivers, and society. Symptomatic treatments for LBD, which can include cognitive, neuropsychiatric, autonomic, sleep, and motor features, are limited with only two drugs (cholinesterase inhibitors) currently approved by regulatory agencies for dementia in LBD. Clinical trials represent a top research priority, but there are many challenges in the development and implementation of trials in LBD. To address these issues and advance the field of clinical trials in the LBDs, the Lewy Body Dementia Association formed an Industry Advisory Council (LBDA IAC), in addition to its Research Center of Excellence program. The LBDA IAC comprises a diverse and collaborative group of experts from academic medical centers, pharmaceutical industries, and the patient advocacy foundation. The inaugural LBDA IAC meeting, held in June 2019, aimed to bring together this group, along with representatives from regulatory agencies, to address the topic of optimizing the landscape of LBD clinical trials. This review highlights the formation of the LBDA IAC, current state of LBD clinical trials, and challenges and opportunities in the field regarding trial design, study populations, diagnostic criteria, and biomarker utilization. Current gaps include a lack of standardized clinical assessment tools and evidence-based management strategies for LBD as well as difficulty and controversy in diagnosing LBD. Challenges in LBD clinical trials include the heterogeneity of LBD pathology and symptomatology, limited understanding of the trajectory of LBD cognitive and core features, absence of LBD-specific outcome measures, and lack of established standardized biologic, imaging, or genetic biomarkers that may inform study design. Demands of study participation (e.g., travel, duration, and frequency of study visits) may also pose challenges and impact trial enrollment, retention, and outcomes. There are opportunities to improve the landscape of LBD clinical trials by harmonizing clinical assessments and biomarkers across cohorts and research studies, developing and validating outcome measures in LBD, engaging the patient community to assess research needs and priorities, and incorporating biomarker and genotype profiling in study design.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...