Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
J Immunother Cancer ; 9(4)2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33849926

RESUMO

BACKGROUND: Current guidelines for treatment of immune checkpoint inhibitor (ICI)-induced nephritis are not evidence based and may lead to excess corticosteroid exposure. We aimed to compare a rapid corticosteroid taper to standard of care. METHODS: Retrospective cohort study in patients with ICI-induced nephritis comparing a rapid taper beginning with 60 mg/day prednisone and tapered to 10 mg within 3 weeks to a historical control group that began 60 mg/day tapered to 10 mg within 6 weeks (standard of care). Renal recovery was defined as creatinine returning to within 1.5-fold baseline. The log-rank test compared the differences in time to renal recovery between the groups. We report rates of renal recovery at 30, 60 and 90 days, and timing and outcomes of ICI rechallenge. RESULTS: Thirteen patients received rapid corticosteroid taper and 14 patients received standard of care. Baseline characteristics were similar between groups. The median time to ≤10 mg/day prednisone was 20 days (IQR 15-25) in the rapid-taper group compared with 38 days (IQR 30-58) in the standard-of-care group. There was no significant difference in the time to renal recovery between the groups, though numerically higher numbers of patients recovered by 30 days, 11 (85%) in the rapid-taper arm versus 6 (46%) in the standard of care arm. Exposure to other nephritis-causing medications (proton pump inhibitor or trimethoprim-sulfamethoxazole) during the corticosteroid taper was more common in the standard of care group, 9 (64%) versus rapid-taper group, 2 (15%), and was associated with longer time to renal recovery, 20 days (IQR 14-101) versus 13 days (IQR 7-34) in those that discontinued nephritis-causing medications. Fifteen (56%) of patients were rechallenged with ICIs, and only two (13%) developed recurrent nephritis. CONCLUSIONS: Patients with ICI-induced nephritis have excellent kidney outcomes when treated with corticosteroids that are tapered over 3 weeks.

2.
Sci Transl Med ; 13(581)2021 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-33597266

RESUMO

Although immune checkpoint inhibitors (ICIs), such as anti-programmed cell death protein-1 (PD-1), can deliver durable antitumor effects, most patients with cancer fail to respond. Recent studies suggest that ICI efficacy correlates with a higher load of tumor-specific neoantigens and development of vitiligo in patients with melanoma. Here, we report that patients with low melanoma neoantigen burdens who responded to ICI had tumors with higher expression of pigmentation-related genes. Moreover, expansion of peripheral blood CD8+ T cell populations specific for melanocyte antigens was observed only in patients who responded to anti-PD-1 therapy, suggesting that ICI can promote breakdown of tolerance toward tumor-lineage self-antigens. In a mouse model of poorly immunogenic melanomas, spreading of epitope recognition toward wild-type melanocyte antigens was associated with markedly improved anti-PD-1 efficacy in two independent approaches: introduction of neoantigens by ultraviolet (UV) B radiation mutagenesis or the therapeutic combination of ablative fractional photothermolysis plus imiquimod. Complete responses against UV mutation-bearing tumors after anti-PD-1 resulted in protection from subsequent engraftment of melanomas lacking any shared neoantigens, as well as pancreatic adenocarcinomas forcibly overexpressing melanocyte-lineage antigens. Our data demonstrate that somatic mutations are sufficient to provoke strong antitumor responses after checkpoint blockade, but long-term responses are not restricted to these putative neoantigens. Epitope spreading toward T cell recognition of wild-type tumor-lineage self-antigens represents a common pathway for successful response to ICI, which can be evoked in neoantigen-deficient tumors by combination therapy with ablative fractional photothermolysis and imiquimod.

3.
Ann Surg Oncol ; 2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-33230747

RESUMO

BACKGROUND: Adjuvant radiation therapy (RT) can decrease lymph node basin (LNB) recurrences in patients with clinically evident melanoma lymph node (LN) metastases following lymphadenectomy, but its role in the era of modern systemic therapies (ST), immune checkpoint or BRAF/MEK inhibitors, is unclear. PATIENTS AND METHODS: Patients at four institutions who underwent lymphadenectomy (1/1/2010-12/31/2019) for clinically evident melanoma LN metastases and received neoadjuvant and/or adjuvant ST with RT, or ST alone, but met indications for RT, were identified. Comparisons were made between ST alone and ST/RT groups. The primary outcome was 3-year cumulative incidence (CI) of LNB recurrence. Secondary outcomes included 3-year incidences of in-transit/distant recurrence and survival estimates. RESULTS: Of 98 patients, 76 received ST alone and 22 received ST/RT. Median follow-up time for patients alive at last follow-up was 44.6 months. The ST/RT group had fewer inguinal node metastases (ST 36.8% versus ST/RT 9.1%; P = 0.04), and more extranodal extension (ST 50% versus ST/RT 77.3%; P = 0.02) and positive lymphadenectomy margins (ST 2.6% versus ST/RT 13.6%; P = 0.04). The 3-year CI of LNB recurrences was lower for the ST/RT group compared with the ST group (13.9% versus 25.2%), but this reduction was not statistically significant (P = 0.36). Groups did not differ significantly in in-transit/distant recurrences (P = 0.24), disease-free survival (P = 0.14), or melanoma-specific survival (P = 0.20). CONCLUSIONS: In the era of modern ST, RT may still have value in reducing LNB recurrences in melanoma with clinical LN metastases. Further research should focus on whether select patient populations derive benefit from combination therapy, and optimizing indications for RT following neoadjuvant ST.

4.
Sci Adv ; 6(46)2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33188016

RESUMO

Immune checkpoint inhibitors (ICIs) show promise, but most patients do not respond. We identify and validate biomarkers from extracellular vesicles (EVs), allowing non-invasive monitoring of tumor- intrinsic and host immune status, as well as a prediction of ICI response. We undertook transcriptomic profiling of plasma-derived EVs and tumors from 50 patients with metastatic melanoma receiving ICI, and validated with an independent EV-only cohort of 30 patients. Plasma-derived EV and tumor transcriptomes correlate. EV profiles reveal drivers of ICI resistance and melanoma progression, exhibit differentially expressed genes/pathways, and correlate with clinical response to ICI. We created a Bayesian probabilistic deconvolution model to estimate contributions from tumor and non-tumor sources, enabling interpretation of differentially expressed genes/pathways. EV RNA-seq mutations also segregated ICI response. EVs serve as a non-invasive biomarker to jointly probe tumor-intrinsic and immune changes to ICI, function as predictive markers of ICI responsiveness, and monitor tumor persistence and immune activation.

5.
Cancer Discov ; 2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-33203734

RESUMO

Circulating tumor cells (CTCs) are shed by cancer into the bloodstream, where a viable subset overcomes oxidative stress to initiate metastasis. We show that single CTCs from melanoma patients coordinately upregulate lipogenesis and iron homeostasis pathways. These are correlated with both intrinsic and acquired resistance to BRAF inhibitors across clonal cultures of BRAF-mutant CTCs. The lipogenesis regulator SREBF2 directly induces transcription of the iron carrier Transferrin (TF), reducing intracellular iron pools, reactive oxygen species (ROS) and lipid peroxidation, thereby conferring resistance to inducers of ferroptosis. Knockdown of endogenous TF impairs tumor formation by melanoma CTCs, and their tumorigenic defects are partially rescued by the lipophilic anti-oxidants Ferrostatin-1 and Vitamin E. In a prospective melanoma cohort, presence of CTCs with high lipogenic and iron metabolic RNA signatures is correlated with adverse clinical outcome, irrespective of treatment regimen. Thus, SREBF2-driven iron homeostatic pathways contribute to cancer progression, drug resistance and metastasis.

6.
Artigo em Inglês | MEDLINE | ID: mdl-33015529

RESUMO

PURPOSE: Conventional cytotoxic therapies increase the risk of clonal hematopoiesis and select for TP53-mutant clones, which carry a high risk for transformation to therapy-related myelodysplastic neoplasms. In contrast, the effect of immune checkpoint blockade (ICB) on clonal hematopoiesis is unknown. METHODS: Paired peripheral-blood samples taken before and after treatment with ICB were obtained for 91 patients with either cutaneous melanoma or basal cell carcinoma. Error-corrected sequencing of a targeted panel of genes recurrently mutated in clonal hematopoiesis was performed on peripheral-blood genomic DNA. RESULTS: The average interval between acquisition of the paired samples was 180 days. Forty-one percent of the patients had clonal hematopoiesis at a variant allele frequency (VAF) > 0.01 in the pretreatment sample. There was near-complete agreement in the distribution and burden of clonal hematopoiesis mutations in the paired blood samples, with 87 of 88 mutations identified across the cohort present in paired samples, regardless of the duration between sample collection. The VAF in the paired samples also showed a high correlation, with an R 2 = 0.95 (P < .0001). In contrast to cytotoxic therapy, exposure to ICB did not lead to selection of TP53- or PPM1D-mutant clones. However, consistent with the known effects of DNA-damaging therapy, we identified one patient who had eight unique TP53 mutations in the posttreatment blood sample after receiving two courses of radiation therapy. CONCLUSION: There was no expansion of hematopoietic clones or selection for clones at high risk for malignant transformation in patients who received ICB, observations that warrant further validation in larger cohorts. These findings highlight an important difference between ICB and conventional cytotoxic therapies and their respective impacts on premalignant genetic lesions.

7.
Cell ; 182(6): 1606-1622.e23, 2020 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-32888429

RESUMO

The enteric nervous system (ENS) coordinates diverse functions in the intestine but has eluded comprehensive molecular characterization because of the rarity and diversity of cells. Here we develop two methods to profile the ENS of adult mice and humans at single-cell resolution: RAISIN RNA-seq for profiling intact nuclei with ribosome-bound mRNA and MIRACL-seq for label-free enrichment of rare cell types by droplet-based profiling. The 1,187,535 nuclei in our mouse atlas include 5,068 neurons from the ileum and colon, revealing extraordinary neuron diversity. We highlight circadian expression changes in enteric neurons, show that disease-related genes are dysregulated with aging, and identify differences between the ileum and proximal/distal colon. In humans, we profile 436,202 nuclei, recovering 1,445 neurons, and identify conserved and species-specific transcriptional programs and putative neuro-epithelial, neuro-stromal, and neuro-immune interactions. The human ENS expresses risk genes for neuropathic, inflammatory, and extra-intestinal diseases, suggesting neuronal contributions to disease.

8.
Nat Biotechnol ; 2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32788668

RESUMO

Natural mitochondrial DNA (mtDNA) mutations enable the inference of clonal relationships among cells. mtDNA can be profiled along with measures of cell state, but has not yet been combined with the massively parallel approaches needed to tackle the complexity of human tissue. Here, we introduce a high-throughput, droplet-based mitochondrial single-cell assay for transposase-accessible chromatin with sequencing (scATAC-seq), a method that combines high-confidence mtDNA mutation calling in thousands of single cells with their concomitant high-quality accessible chromatin profile. This enables the inference of mtDNA heteroplasmy, clonal relationships, cell state and accessible chromatin variation in individual cells. We reveal single-cell variation in heteroplasmy of a pathologic mtDNA variant, which we associate with intra-individual chromatin variability and clonal evolution. We clonally trace thousands of cells from cancers, linking epigenomic variability to subclonal evolution, and infer cellular dynamics of differentiating hematopoietic cells in vitro and in vivo. Taken together, our approach enables the study of cellular population dynamics and clonal properties in vivo.

9.
Clin Cancer Res ; 26(22): 6039-6050, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32820016

RESUMO

PURPOSE: The extracellular matrix (ECM) is an intriguing, yet understudied component of therapy resistance. Here, we investigated the role of ECM remodeling by the collagenase, MT1-MMP, in conferring resistance of v-Raf murine sarcoma viral oncogene homolog B1 (BRAF)-mutant melanoma to BRAF inhibitor (BRAFi) therapy. EXPERIMENTAL DESIGN: Publicly available RNA-sequencing data and reverse phase protein array were used to determine the relevance of MT1-MMP upregulation in BRAFi-resistant melanoma in patients, patient-derived xenografts, and cell line-derived tumors. Short hairpin RNA (shRNA)-mediated knockdown of MT1-MMP, inhibition via the selective MT1-MMP/MMP2 inhibitor, ND322, or overexpression of MT1-MMP was used to assess the role of MT1-MMP in mediating resistance to BRAFi. RESULTS: MT1-MMP was consistently upregulated in posttreatment tumor samples derived from patients upon disease progression and in melanoma xenografts and cell lines that acquired resistance to BRAFi. shRNA- or ND322-mediated inhibition of MT1-MMP synergized with BRAFi leading to resensitization of resistant cells and tumors to BRAFi. The resistant phenotype depends on the ability of cells to cleave the ECM. Resistant cells seeded in MT1-MMP uncleavable matrixes were resensitized to BRAFi similarly to MT1-MMP inhibition. This is due to the inability of cells to activate integrinß1 (ITGB1)/FAK signaling, as restoration of ITGB1 activity is sufficient to maintain resistance to BRAFi in the context of MT1-MMP inhibition. Finally, the increase in MT1-MMP in BRAFi-resistant cells is TGFß dependent, as inhibition of TGFß receptors I/II dampens MT1-MMP overexpression and restores sensitivity to BRAF inhibition. CONCLUSIONS: BRAF inhibition results in a selective pressure toward higher expression of MT1-MMP. MT1-MMP is pivotal to an ECM-based signaling pathway that confers resistance to BRAFi therapy.

10.
Nat Commun ; 11(1): 3946, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32770055

RESUMO

Melanomas can switch to a dedifferentiated cell state upon exposure to cytotoxic T cells. However, it is unclear whether such tumor cells pre-exist in patients and whether they can be resensitized to immunotherapy. Here, we chronically expose (patient-derived) melanoma cell lines to differentiation antigen-specific cytotoxic T cells and observe strong enrichment of a pre-existing NGFRhi population. These fractions are refractory also to T cells recognizing non-differentiation antigens, as well as to BRAF + MEK inhibitors. NGFRhi cells induce the neurotrophic factor BDNF, which contributes to T cell resistance, as does NGFR. In melanoma patients, a tumor-intrinsic NGFR signature predicts anti-PD-1 therapy resistance, and NGFRhi tumor fractions are associated with immune exclusion. Lastly, pharmacologic NGFR inhibition restores tumor sensitivity to T cell attack in vitro and in melanoma xenografts. These findings demonstrate the existence of a stable and pre-existing NGFRhi multitherapy-refractory melanoma subpopulation, which ought to be eliminated to revert intrinsic resistance to immunotherapeutic intervention.


Assuntos
Antineoplásicos Imunológicos/farmacologia , Melanoma/tratamento farmacológico , Proteínas do Tecido Nervoso/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Receptores de Fator de Crescimento Neural/metabolismo , Neoplasias Cutâneas/tratamento farmacológico , Linfócitos T Citotóxicos/imunologia , Animais , Antineoplásicos Imunológicos/uso terapêutico , Fator Neurotrófico Derivado do Encéfalo/antagonistas & inibidores , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , Masculino , Melanoma/genética , Melanoma/imunologia , Melanoma/patologia , Camundongos , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Proteínas do Tecido Nervoso/antagonistas & inibidores , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/imunologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , RNA-Seq , Receptores de Fator de Crescimento Neural/antagonistas & inibidores , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/imunologia , Neoplasias Cutâneas/patologia , Linfócitos T Citotóxicos/metabolismo , Evasão Tumoral/genética , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Cell ; 182(3): 655-671.e22, 2020 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-32603654

RESUMO

Checkpoint blockade with antibodies specific for the PD-1 and CTLA-4 inhibitory receptors can induce durable responses in a wide range of human cancers. However, the immunological mechanisms responsible for severe inflammatory side effects remain poorly understood. Here we report a comprehensive single-cell analysis of immune cell populations in colitis, a common and severe side effect of checkpoint blockade. We observed a striking accumulation of CD8 T cells with highly cytotoxic and proliferative states and no evidence of regulatory T cell depletion. T cell receptor (TCR) sequence analysis demonstrated that a substantial fraction of colitis-associated CD8 T cells originated from tissue-resident populations, explaining the frequently early onset of colitis symptoms following treatment initiation. Our analysis also identified cytokines, chemokines, and surface receptors that could serve as therapeutic targets for colitis and potentially other inflammatory side effects of checkpoint blockade.

12.
Genomics Proteomics Bioinformatics ; 18(1): 26-40, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32413516

RESUMO

BRAF is a serine/threonine kinase that harbors activating mutations in ∼7% of human malignancies and ∼60% of melanomas. Despite initial clinical responses to BRAF inhibitors, patients frequently develop drug resistance. To identify candidate therapeutic targets for BRAF inhibitor resistant melanoma, we conduct CRISPR screens in melanoma cells harboring an activating BRAF mutation that had also acquired resistance to BRAF inhibitors. To investigate the mechanisms and pathways enabling resistance to BRAF inhibitors in melanomas, we integrate expression, ATAC-seq, and CRISPR screen data. We identify the JUN family transcription factors and the ETS family transcription factor ETV5 as key regulators of CDK6, which together enable resistance to BRAF inhibitors in melanoma cells. Our findings reveal genes contributing to resistance to a selective BRAF inhibitor PLX4720, providing new insights into gene regulation in BRAF inhibitor resistant melanoma cells.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Indóis/farmacologia , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Melanoma/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Sulfonamidas/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Melanoma/genética , Melanoma/patologia , Mutação , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas B-raf/metabolismo
13.
Cancer ; 126(11): 2614-2624, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32157676

RESUMO

BACKGROUND: Immunotherapy for stage IV melanoma has dramatically changed the overall prognosis and treatment strategies. The aim of this study was to evaluate whether changes in systemic immunotherapy options have significantly altered surgical resection rates for patients with stage IV melanoma. METHODS: The National Cancer Database (2004-2015) was used to perform a difference-in-difference analysis to evaluate whether the rate of surgical resection of metastatic disease for stage IV melanoma differed with the use of immunotherapy in the checkpoint inhibitor era in comparison with the use of immunotherapy in the pre-checkpoint inhibitor era. An adjusted difference-in-difference analysis stratified by facility type was performed. An adjusted Poisson regression analysis evaluated predictors of surgical resection in patients with stage IV melanoma who received immunotherapy. RESULTS: There were 14,433 patients with stage IV melanoma (median age, 66 years [interquartile range, 56-76 years]; female, 31.7%), and of all patients in the checkpoint inhibitor era (n = 7,524), 25% (n = 1,879) received immunotherapy. Patients with stage IV disease who received immunotherapy in the checkpoint inhibitor era were more likely to be younger, be healthier, have private insurance, come from upper income quartiles, and be treated at academic programs. A difference-in-difference analysis revealed similar rates of surgical resection of metastatic disease with the use of immunotherapy in the checkpoint inhibitor era and the pre-checkpoint inhibitor era, regardless of facility type. CONCLUSIONS: The distribution of immunotherapy was unequal among patients with stage IV melanoma. Across all facilities, the rates of surgical resection of metastatic disease for stage IV melanoma did not differ with the use of immunotherapy between the checkpoint inhibitor era and the pre-checkpoint inhibitor era.

14.
Proc Natl Acad Sci U S A ; 117(14): 8001-8012, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32193336

RESUMO

The cyclin-dependent kinase 5 (CDK5), originally described as a neuronal-specific kinase, is also frequently activated in human cancers. Using conditional CDK5 knockout mice and a mouse model of highly metastatic melanoma, we found that CDK5 is dispensable for the growth of primary tumors. However, we observed that ablation of CDK5 completely abrogated the metastasis, revealing that CDK5 is essential for the metastatic spread. In mouse and human melanoma cells CDK5 promotes cell invasiveness by directly phosphorylating an intermediate filament protein, vimentin, thereby inhibiting assembly of vimentin filaments. Chemical inhibition of CDK5 blocks the metastatic spread of patient-derived melanomas in patient-derived xenograft (PDX) mouse models. Hence, inhibition of CDK5 might represent a very potent therapeutic strategy to impede the metastatic dissemination of malignant cells.


Assuntos
Quinase 5 Dependente de Ciclina/metabolismo , Melanoma Experimental/patologia , Melanoma/patologia , Neoplasias Cutâneas/patologia , Animais , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Quinase 5 Dependente de Ciclina/antagonistas & inibidores , Quinase 5 Dependente de Ciclina/genética , Feminino , Dosagem de Genes , Humanos , Masculino , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/mortalidade , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/genética , Camundongos , Camundongos Knockout , Fosforilação/efeitos dos fármacos , Fosforilação/genética , Prognóstico , Pele/patologia , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/mortalidade , Vimentina/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Clin Cancer Res ; 25(22): 6852-6867, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31375515

RESUMO

PURPOSE: Treatment of BRAFV600E -mutant melanomas with MAPK inhibitors (MAPKi) results in significant tumor regression, but acquired resistance is pervasive. To understand nonmutational mechanisms underlying the adaptation to MAPKi and to identify novel vulnerabilities of melanomas treated with MAPKi, we focused on the initial response phase during treatment with MAPKi. EXPERIMENTAL DESIGN: By screening proteins expressed on the cell surface of melanoma cells, we identified the fatty acid transporter CD36 as the most consistently upregulated protein upon short-term treatment with MAPKi. We further investigated the effects of MAPKi on fatty acid metabolism using in vitro and in vivo models and analyzing patients' pre- and on-treatment tumor specimens. RESULTS: Melanoma cells treated with MAPKi displayed increased levels of CD36 and of PPARα-mediated and carnitine palmitoyltransferase 1A (CPT1A)-dependent fatty acid oxidation (FAO). While CD36 is a useful marker of melanoma cells during adaptation and drug-tolerant phases, the upregulation of CD36 is not functionally involved in FAO changes that characterize MAPKi-treated cells. Increased FAO is required for BRAFV600E -mutant melanoma cells to survive under the MAPKi-induced metabolic stress prior to acquiring drug resistance. The upfront and concomitant inhibition of FAO, glycolysis, and MAPK synergistically inhibits tumor cell growth in vitro and in vivo. CONCLUSIONS: Thus, we identified a clinically relevant therapeutic approach that has the potential to improve initial responses and to delay acquired drug resistance of BRAFV600E -mutant melanoma.


Assuntos
Adaptação Biológica , Ácidos Graxos/metabolismo , Melanoma/genética , Melanoma/metabolismo , Mutação , Oxirredução , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/genética , Alelos , Animais , Biomarcadores , Antígenos CD36/genética , Antígenos CD36/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Genótipo , Glicólise , Humanos , Imunofenotipagem , Melanoma/patologia , Camundongos , Modelos Biológicos , Estadiamento de Neoplasias , PPAR alfa/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Nat Immunol ; 20(9): 1231-1243, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31358999

RESUMO

Understanding resistance to antibody to programmed cell death protein 1 (PD-1; anti-PD-1) is crucial for the development of reversal strategies. In anti-PD-1-resistant models, simultaneous anti-PD-1 and vaccine therapy reversed resistance, while PD-1 blockade before antigen priming abolished therapeutic outcomes. This was due to induction of dysfunctional PD-1+CD38hi CD8+ cells by PD-1 blockade in suboptimally primed CD8 cell conditions induced by tumors. This results in erroneous T cell receptor signaling and unresponsiveness to antigenic restimulation. On the other hand, PD-1 blockade of optimally primed CD8 cells prevented the induction of dysfunctional CD8 cells, reversing resistance. Depleting PD-1+CD38hi CD8+ cells enhanced therapeutic outcomes. Furthermore, non-responding patients showed more PD-1+CD38+CD8+ cells in tumor and blood than responders. In conclusion, the status of CD8+ T cell priming is a major contributor to anti-PD-1 therapeutic resistance. PD-1 blockade in unprimed or suboptimally primed CD8 cells induces resistance through the induction of PD-1+CD38hi CD8+ cells that is reversed by optimal priming. PD-1+CD38hi CD8+ cells serve as a predictive and therapeutic biomarker for anti-PD-1 treatment. Sequencing of anti-PD-1 and vaccine is crucial for successful therapy.


Assuntos
ADP-Ribosil Ciclase 1/metabolismo , Linfócitos T CD8-Positivos/imunologia , Resistencia a Medicamentos Antineoplásicos/imunologia , Glicoproteínas de Membrana/metabolismo , Neoplasias/imunologia , Receptor de Morte Celular Programada 1/imunologia , ADP-Ribosil Ciclase 1/genética , Animais , Anticorpos/imunologia , Linfócitos T CD8-Positivos/patologia , Vacinas Anticâncer/imunologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Humanos , Imunoterapia/métodos , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Microambiente Tumoral/imunologia
19.
Immunity ; 50(6): 1498-1512.e5, 2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31097342

RESUMO

Despite compelling rates of durable clinical responses to programmed cell death-1 (PD-1) blockade, advances are needed to extend these benefits to resistant tumors. We found that tumor-bearing mice deficient in the chemokine receptor CXCR3 responded poorly to anti-PD-1 treatment. CXCR3 and its ligand CXCL9 were critical for a productive CD8+ T cell response in tumor-bearing mice treated with anti-PD-1 but were not required for the infiltration of CD8+ T cells into tumors. The anti-PD-1-induced anti-tumor response was facilitated by CXCL9 production from intratumoral CD103+ dendritic cells, suggesting that CXCR3 facilitates dendritic cell-T cell interactions within the tumor microenvironment. CXCR3 ligands in murine tumors and in plasma of melanoma patients were an indicator of clinical response to anti-PD-1, and their induction in non-responsive murine tumors promoted responsiveness to anti-PD-1. Our data suggest that the CXCR3 chemokine system is a biomarker for sensitivity to PD-1 blockade and that augmenting the intratumoral function of this chemokine system could improve clinical outcomes.


Assuntos
Antineoplásicos Imunológicos/farmacologia , Imunomodulação/efeitos dos fármacos , Neoplasias/imunologia , Neoplasias/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Receptores CXCR3/metabolismo , Animais , Antineoplásicos Imunológicos/uso terapêutico , Biomarcadores , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Modelos Animais de Doenças , Epigênese Genética , Humanos , Ativação Linfocitária , Camundongos , Camundongos Knockout , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Subpopulações de Linfócitos T/efeitos dos fármacos , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Microambiente Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Cell ; 176(6): 1325-1339.e22, 2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30827679

RESUMO

Lineage tracing provides key insights into the fate of individual cells in complex organisms. Although effective genetic labeling approaches are available in model systems, in humans, most approaches require detection of nuclear somatic mutations, which have high error rates, limited scale, and do not capture cell state information. Here, we show that somatic mutations in mtDNA can be tracked by single-cell RNA or assay for transposase accessible chromatin (ATAC) sequencing. We leverage somatic mtDNA mutations as natural genetic barcodes and demonstrate their utility as highly accurate clonal markers to infer cellular relationships. We track native human cells both in vitro and in vivo and relate clonal dynamics to gene expression and chromatin accessibility. Our approach should allow clonal tracking at a 1,000-fold greater scale than with nuclear genome sequencing, with simultaneous information on cell state, opening the way to chart cellular dynamics in human health and disease.


Assuntos
DNA Mitocondrial/genética , Mitocôndrias/genética , Sequência de Bases , Linhagem da Célula , Cromatina , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Genômica/métodos , Células HEK293 , Células-Tronco Hematopoéticas/fisiologia , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Mutação , Análise de Célula Única , Transposases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...