Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 9(1): 14956, 2019 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-31628414

RESUMO

While the link between diet-induced changes in gut microbiota and lipid metabolism in metabolic syndrome (MetS) has been established, the contribution of host genetics is rather unexplored. As several findings suggested a role for the lysosomal lipid transporter Niemann-Pick type C1 (NPC1) in macrophages during MetS, we here explored whether a hematopoietic Npc1 mutation, induced via bone marrow transplantation, influences gut microbiota composition in low-density lipoprotein receptor knockout (Ldlr-/-) mice fed a high-fat, high-cholesterol (HFC) diet for 12 weeks. Ldlr-/- mice fed a HFC diet mimic a human plasma lipoprotein profile and show features of MetS, providing a model to explore the role of host genetics on gut microbiota under MetS conditions. Fecal samples were used to profile the microbial composition by 16 s ribosomal RNA gene sequencing. The hematopoietic Npc1 mutation shifted the gut microbiota composition and increased microbial richness and diversity. Variations in plasma lipid levels correlated with microbial diversity and richness as well as with several bacterial genera. This study suggests that host genetic influences on lipid metabolism affect the gut microbiome under MetS conditions. Future research investigating the role of host genetics on gut microbiota might therefore lead to identification of diagnostic and therapeutic targets for MetS.

2.
Genome Biol ; 20(1): 146, 2019 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-31409373

RESUMO

BACKGROUND: Epigenetic clocks are mathematical models that predict the biological age of an individual using DNA methylation data and have emerged in the last few years as the most accurate biomarkers of the aging process. However, little is known about the molecular mechanisms that control the rate of such clocks. Here, we have examined the human epigenetic clock in patients with a variety of developmental disorders, harboring mutations in proteins of the epigenetic machinery. RESULTS: Using the Horvath epigenetic clock, we perform an unbiased screen for epigenetic age acceleration in the blood of these patients. We demonstrate that loss-of-function mutations in the H3K36 histone methyltransferase NSD1, which cause Sotos syndrome, substantially accelerate epigenetic aging. Furthermore, we show that the normal aging process and Sotos syndrome share methylation changes and the genomic context in which they occur. Finally, we found that the Horvath clock CpG sites are characterized by a higher Shannon methylation entropy when compared with the rest of the genome, which is dramatically decreased in Sotos syndrome patients. CONCLUSIONS: These results suggest that the H3K36 methylation machinery is a key component of the epigenetic maintenance system in humans, which controls the rate of epigenetic aging, and this role seems to be conserved in model organisms. Our observations provide novel insights into the mechanisms behind the epigenetic aging clock and we expect will shed light on the different processes that erode the human epigenetic landscape during aging.

3.
Genome Biol ; 20(1): 30, 2019 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-30744673

RESUMO

BACKGROUND: Alternative splicing is a key regulatory mechanism in eukaryotic cells and increases the effective number of functionally distinct gene products. Using bulk RNA sequencing, splicing variation has been studied across human tissues and in genetically diverse populations. This has identified disease-relevant splicing events, as well as associations between splicing and genomic features, including sequence composition and conservation. However, variability in splicing between single cells from the same tissue or cell type and its determinants remains poorly understood. RESULTS: We applied parallel DNA methylation and transcriptome sequencing to differentiating human induced pluripotent stem cells to characterize splicing variation (exon skipping) and its determinants. Our results show that variation in single-cell splicing can be accurately predicted based on local sequence composition and genomic features. We observe moderate but consistent contributions from local DNA methylation profiles to splicing variation across cells. A combined model that is built based on genomic features as well as DNA methylation information accurately predicts different splicing modes of individual cassette exons. These categories include the conventional inclusion and exclusion patterns, but also more subtle modes of cell-to-cell variation in splicing. Finally, we identified and characterized associations between DNA methylation and splicing changes during cell differentiation. CONCLUSIONS: Our study yields new insights into alternative splicing at the single-cell level and reveals a previously underappreciated link between DNA methylation variation and splicing.


Assuntos
Processamento Alternativo , Metilação de DNA , Diferenciação Celular , Humanos , Células-Tronco Pluripotentes Induzidas , Análise de Célula Única
4.
Sci Transl Med ; 10(472)2018 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-30567928

RESUMO

Changes in the gut microbiota have been associated with two of the most common gastrointestinal diseases, inflammatory bowel disease (IBD) and irritable bowel syndrome (IBS). Here, we performed a case-control analysis using shotgun metagenomic sequencing of stool samples from 1792 individuals with IBD and IBS compared with control individuals in the general population. Despite substantial overlap between the gut microbiome of patients with IBD and IBS compared with control individuals, we were able to use gut microbiota composition differences to distinguish patients with IBD from those with IBS. By combining species-level profiles and strain-level profiles with bacterial growth rates, metabolic functions, antibiotic resistance, and virulence factor analyses, we identified key bacterial species that may be involved in two common gastrointestinal diseases.


Assuntos
Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais/microbiologia , Síndrome do Intestino Irritável/microbiologia , Bactérias/crescimento & desenvolvimento , Bactérias/patogenicidade , Biodiversidade , Estudos de Casos e Controles , Resistência Microbiana a Medicamentos , Fezes/microbiologia , Microbioma Gastrointestinal/genética , Humanos , Metagenoma , Modelos Biológicos , Fenótipo , Análise de Componente Principal , Curva ROC , Especificidade da Espécie , Virulência
5.
Gut Microbes ; : 1-9, 2018 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-30373468

RESUMO

Several gastrointestinal diseases show a sex imbalance, although the underlying (patho)physiological mechanisms behind this are not well understood. The gut microbiome may be involved in this process, forming a complex interaction with host immune system, sex hormones, medication and other environmental factors. Here we performed sex-specific analyses of fecal microbiota composition in 1135 individuals from a population-based cohort. The overall gut microbiome composition of females and males was significantly different (p = 0.001), with females showing a greater microbial diversity (p = 0.009). After correcting for the effects of intrinsic factors, smoking, diet and medications, female hormonal factors such as the use of oral contraceptives and undergoing an ovariectomy were associated with microbial species and pathways. Females had a higher richness of antibiotic-resistance genes, with the most notable being resistance to the lincosamide nucleotidyltransferase (LNU) gene family. The higher abundance of resistance genes is consistent with the greater prescription of the Macrolide-Lincosamide-Streptogramin classes of antibiotics to females. Furthermore, we observed an increased resistance to aminoglycosides in females with self-reported irritable bowel syndrome. These results throw light upon the effects of common medications that are differentially prescribed between sexes and highlight the importance of sex-specific analysis when studying the gut microbiome and resistome.

6.
Nat Genet ; 50(12): 1752, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30341443

RESUMO

In the version of this paper originally published, there was a typographical error. In the Discussion, the sentence "In line with this, Ep-CAM-deficient mice exhibited increased intestinal permeability and decreased ion transport60, which may contribute to CVD susceptibility risk59" originally read iron instead of ion transport. This error has been corrected in the HTML, PDF and print versions of the article.

7.
Nat Genet ; 50(11): 1524-1532, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30250126

RESUMO

Despite a growing body of evidence, the role of the gut microbiome in cardiovascular diseases is still unclear. Here, we present a systems-genome-wide and metagenome-wide association study on plasma concentrations of 92 cardiovascular-disease-related proteins in the population cohort LifeLines-DEEP. We identified genetic components for 73 proteins and microbial associations for 41 proteins, of which 31 were associated to both. The genetic and microbial factors identified mostly exert additive effects and collectively explain up to 76.6% of inter-individual variation (17.5% on average). Genetics contribute most to concentrations of immune-related proteins, while the gut microbiome contributes most to proteins involved in metabolism and intestinal health. We found several host-microbe interactions that impact proteins involved in epithelial function, lipid metabolism, and central nervous system function. This study provides important evidence for a joint genetic and microbial effect in cardiovascular disease and provides directions for future applications in personalized medicine.

8.
Microbiome ; 6(1): 101, 2018 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-29880062

RESUMO

BACKGROUND: In recent years, human microbiota, especially gut microbiota, have emerged as an important yet complex trait influencing human metabolism, immunology, and diseases. Many studies are investigating the forces underlying the observed variation, including the human genetic variants that shape human microbiota. Several preliminary genome-wide association studies (GWAS) have been completed, but more are necessary to achieve a fuller picture. RESULTS: Here, we announce the MiBioGen consortium initiative, which has assembled 18 population-level cohorts and some 19,000 participants. Its aim is to generate new knowledge for the rapidly developing field of microbiota research. Each cohort has surveyed the gut microbiome via 16S rRNA sequencing and genotyped their participants with full-genome SNP arrays. We have standardized the analytical pipelines for both the microbiota phenotypes and genotypes, and all the data have been processed using identical approaches. Our analysis of microbiome composition shows that we can reduce the potential artifacts introduced by technical differences in generating microbiota data. We are now in the process of benchmarking the association tests and performing meta-analyses of genome-wide associations. All pipeline and summary statistics results will be shared using public data repositories. CONCLUSION: We present the largest consortium to date devoted to microbiota-GWAS. We have adapted our analytical pipelines to suit multi-cohort analyses and expect to gain insight into host-microbiota cross-talk at the genome-wide level. And, as an open consortium, we invite more cohorts to join us (by contacting one of the corresponding authors) and to follow the analytical pipeline we have developed.

9.
Lancet Respir Med ; 6(5): 379-388, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29496485

RESUMO

BACKGROUND: DNA methylation profiles associated with childhood asthma might provide novel insights into disease pathogenesis. We did an epigenome-wide association study to assess methylation profiles associated with childhood asthma. METHODS: We did a large-scale epigenome-wide association study (EWAS) within the Mechanisms of the Development of ALLergy (MeDALL) project. We examined epigenome-wide methylation using Illumina Infinium Human Methylation450 BeadChips (450K) in whole blood in 207 children with asthma and 610 controls at age 4-5 years, and 185 children with asthma and 546 controls at age 8 years using a cross-sectional case-control design. After identification of differentially methylated CpG sites in the discovery analysis, we did a validation study in children (4-16 years; 247 cases and 2949 controls) from six additional European cohorts and meta-analysed the results. We next investigated whether replicated CpG sites in cord blood predict later asthma in 1316 children. We subsequently investigated cell-type-specific methylation of the identified CpG sites in eosinophils and respiratory epithelial cells and their related gene-expression signatures. We studied cell-type specificity of the asthma association of the replicated CpG sites in 455 respiratory epithelial cell samples, collected by nasal brushing of 16-year-old children as well as in DNA isolated from blood eosinophils (16 with asthma, eight controls [age 2-56 years]) and compared this with whole-blood DNA samples of 74 individuals with asthma and 93 controls (age 1-79 years). Whole-blood transcriptional profiles associated with replicated CpG sites were annotated using RNA-seq data of subsets of peripheral blood mononuclear cells sorted by fluorescence-activated cell sorting. FINDINGS: 27 methylated CpG sites were identified in the discovery analysis. 14 of these CpG sites were replicated and passed genome-wide significance (p<1·14 × 10-7) after meta-analysis. Consistently lower methylation levels were observed at all associated loci across childhood from age 4 to 16 years in participants with asthma, but not in cord blood at birth. All 14 CpG sites were significantly associated with asthma in the second replication study using whole-blood DNA, and were strongly associated with asthma in purified eosinophils. Whole-blood transcriptional signatures associated with these CpG sites indicated increased activation of eosinophils, effector and memory CD8 T cells and natural killer cells, and reduced number of naive T cells. Five of the 14 CpG sites were associated with asthma in respiratory epithelial cells, indicating cross-tissue epigenetic effects. INTERPRETATION: Reduced whole-blood DNA methylation at 14 CpG sites acquired after birth was strongly associated with childhood asthma. These CpG sites and their associated transcriptional profiles indicate activation of eosinophils and cytotoxic T cells in childhood asthma. Our findings merit further investigations of the role of epigenetics in a clinical context. FUNDING: EU and the Seventh Framework Programme (the MeDALL project).


Assuntos
Asma/genética , Ilhas de CpG , Metilação de DNA , Eosinófilos/imunologia , Epigênese Genética , Asma/sangue , Criança , Pré-Escolar , DNA/sangue , Feminino , Estudo de Associação Genômica Ampla , Humanos , Masculino , Linfócitos T Citotóxicos
10.
PeerJ ; 6: e4303, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29441232

RESUMO

Microbes in the gut microbiome form sub-communities based on shared niche specialisations and specific interactions between individual taxa. The inter-microbial relationships that define these communities can be inferred from the co-occurrence of taxa across multiple samples. Here, we present an approach to identify comparable communities within different gut microbiota co-occurrence networks, and demonstrate its use by comparing the gut microbiota community structures of three geographically diverse populations. We combine gut microbiota profiles from 2,764 British, 1,023 Dutch, and 639 Israeli individuals, derive co-occurrence networks between their operational taxonomic units, and detect comparable communities within them. Comparing populations we find that community structure is significantly more similar between datasets than expected by chance. Mapping communities across the datasets, we also show that communities can have similar associations to host phenotypes in different populations. This study shows that the community structure within the gut microbiota is stable across populations, and describes a novel approach that facilitates comparative community-centric microbiome analyses.

11.
Gut ; 67(1): 108-119, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-27802154

RESUMO

OBJECTIVE: Patients with IBD display substantial heterogeneity in clinical characteristics. We hypothesise that individual differences in the complex interaction of the host genome and the gut microbiota can explain the onset and the heterogeneous presentation of IBD. Therefore, we performed a case-control analysis of the gut microbiota, the host genome and the clinical phenotypes of IBD. DESIGN: Stool samples, peripheral blood and extensive phenotype data were collected from 313 patients with IBD and 582 truly healthy controls, selected from a population cohort. The gut microbiota composition was assessed by tag-sequencing the 16S rRNA gene. All participants were genotyped. We composed genetic risk scores from 11 functional genetic variants proven to be associated with IBD in genes that are directly involved in the bacterial handling in the gut: NOD2, CARD9, ATG16L1, IRGM and FUT2. RESULTS: Strikingly, we observed significant alterations of the gut microbiota of healthy individuals with a high genetic risk for IBD: the IBD genetic risk score was significantly associated with a decrease in the genus Roseburia in healthy controls (false discovery rate 0.017). Moreover, disease location was a major determinant of the gut microbiota: the gut microbiota of patients with colonic Crohn's disease (CD) is different from that of patients with ileal CD, with a decrease in alpha diversity associated to ileal disease (p=3.28×10-13). CONCLUSIONS: We show for the first time that genetic risk variants associated with IBD influence the gut microbiota in healthy individuals. Roseburia spp are acetate-to-butyrate converters, and a decrease has already been observed in patients with IBD.


Assuntos
Microbioma Gastrointestinal/genética , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/microbiologia , Adulto , Estudos de Casos e Controles , Colite Ulcerativa/genética , Colite Ulcerativa/microbiologia , Colite Ulcerativa/patologia , Doença de Crohn/genética , Doença de Crohn/microbiologia , Doença de Crohn/patologia , Disbiose/complicações , Disbiose/genética , Disbiose/microbiologia , Fezes/microbiologia , Feminino , Predisposição Genética para Doença , Interações Hospedeiro-Patógeno/genética , Humanos , Doenças Inflamatórias Intestinais/patologia , Masculino , Pessoa de Meia-Idade , Medição de Risco/métodos , Índice de Gravidade de Doença
12.
PLoS One ; 12(10): e0182472, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29084233

RESUMO

BACKGROUND: DNA methylation is affected by the activities of the key enzymes and intermediate metabolites of the one-carbon pathway, one of which involves homocysteine. We investigated the effect of the well-known genetic variant associated with mildly elevated homocysteine: MTHFR 677C>T independently and in combination with other homocysteine-associated variants, on genome-wide leukocyte DNA-methylation. METHODS: Methylation levels were assessed using Illumina 450k arrays on 9,894 individuals of European ancestry from 12 cohort studies. Linear-mixed-models were used to study the association of additive MTHFR 677C>T and genetic-risk score (GRS) based on 18 homocysteine-associated SNPs, with genome-wide methylation. RESULTS: Meta-analysis revealed that the MTHFR 677C>T variant was associated with 35 CpG sites in cis, and the GRS showed association with 113 CpG sites near the homocysteine-associated variants. Genome-wide analysis revealed that the MTHFR 677C>T variant was associated with 1 trans-CpG (nearest gene ZNF184), while the GRS model showed association with 5 significant trans-CpGs annotated to nearest genes PTF1A, MRPL55, CTDSP2, CRYM and FKBP5. CONCLUSIONS: Our results do not show widespread changes in DNA-methylation across the genome, and therefore do not support the hypothesis that mildly elevated homocysteine is associated with widespread methylation changes in leukocytes.


Assuntos
Metilação de DNA , Homocisteína/metabolismo , Leucócitos/metabolismo , Metilenotetra-Hidrofolato Redutase (NADPH2)/genética , Adulto , Cromossomos Humanos Par 6 , Estudos de Coortes , Ilhas de CpG , Humanos , Polimorfismo de Nucleotídeo Único
13.
Genome Biol ; 18(1): 68, 2017 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-28399939

RESUMO

BACKGROUND: DNA methylation changes at a discrete set of sites in the human genome are predictive of chronological and biological age. However, it is not known whether these changes are causative or a consequence of an underlying ageing process. It has also not been shown whether this epigenetic clock is unique to humans or conserved in the more experimentally tractable mouse. RESULTS: We have generated a comprehensive set of genome-scale base-resolution methylation maps from multiple mouse tissues spanning a wide range of ages. Many CpG sites show significant tissue-independent correlations with age which allowed us to develop a multi-tissue predictor of age in the mouse. Our model, which estimates age based on DNA methylation at 329 unique CpG sites, has a median absolute error of 3.33 weeks and has similar properties to the recently described human epigenetic clock. Using publicly available datasets, we find that the mouse clock is accurate enough to measure effects on biological age, including in the context of interventions. While females and males show no significant differences in predicted DNA methylation age, ovariectomy results in significant age acceleration in females. Furthermore, we identify significant differences in age-acceleration dependent on the lipid content of the diet. CONCLUSIONS: Here we identify and characterise an epigenetic predictor of age in mice, the mouse epigenetic clock. This clock will be instrumental for understanding the biology of ageing and will allow modulation of its ticking rate and resetting the clock in vivo to study the impact on biological age.


Assuntos
Envelhecimento/genética , Metilação de DNA , Epigênese Genética , Epigenômica/métodos , Animais , Análise por Conglomerados , Ilhas de CpG , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Camundongos , Especificidade de Órgãos/genética
14.
Gut Microbes ; 8(4): 351-358, 2017 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-28118083

RESUMO

Proton pump inhibitors (PPIs), used to treat gastro-esophageal reflux and prevent gastric ulcers, are among the most widely used drugs in the world. The use of PPIs is associated with an increased risk of enteric infections. Since the gut microbiota can, depending on composition, increase or decrease the risk of enteric infections, we investigated the effect of PPI-use on the gut microbiota. We discovered profound differences in the gut microbiota of PPI users: 20% of their bacterial taxa were statistically significantly altered compared with those of non-users. Moreover, we found that it is not only PPIs, but also antibiotics, antidepressants, statins and other commonly used medication were associated with distinct gut microbiota signatures. As a consequence, commonly used medications could affect how the gut microbiota resist enteric infections, promote or ameliorate gut inflammation, or change the host's metabolism. More studies are clearly needed to understand the role of commonly used medication in altering the gut microbiota as well as the subsequent health consequences.


Assuntos
Bactérias/efeitos dos fármacos , Refluxo Gastroesofágico/tratamento farmacológico , Microbioma Gastrointestinal/efeitos dos fármacos , Inibidores da Bomba de Prótons/farmacologia , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Refluxo Gastroesofágico/microbiologia , Humanos
15.
BMC Genomics ; 18(1): 25, 2017 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-28056824

RESUMO

BACKGROUND: DNA methylation has been found to associate with disease, aging and environmental exposure, but it is unknown how genome, environment and disease influence DNA methylation dynamics in childhood. RESULTS: By analysing 538 paired DNA blood samples from children at birth and at 4-5 years old and 726 paired samples from children at 4 and 8 years old from four European birth cohorts using the Illumina Infinium Human Methylation 450 k chip, we have identified 14,150 consistent age-differential methylation sites (a-DMSs) at epigenome-wide significance of p < 1.14 × 10-7. Genes with an increase in age-differential methylation were enriched in pathways related to 'development', and were more often located in bivalent transcription start site (TSS) regions, which can silence or activate expression of developmental genes. Genes with a decrease in age-differential methylation were involved in cell signalling, and enriched on H3K27ac, which can predict developmental state. Maternal smoking tended to decrease methylation levels at the identified da-DMSs. We also found 101 a-DMSs (0.71%) that were regulated by genetic variants using cis-differential Methylation Quantitative Trait Locus (cis-dMeQTL) mapping. Moreover, a-DMS-associated genes during early development were significantly more likely to be linked with disease. CONCLUSION: Our study provides new insights into the dynamic epigenetic landscape of the first 8 years of life.


Assuntos
Desenvolvimento Infantil , Metilação de DNA , Epigênese Genética , Epigenômica , Criança , Pré-Escolar , Ilhas de CpG , Epigenômica/métodos , Feminino , Predisposição Genética para Doença , Variação Genética , Estudo de Associação Genômica Ampla , Humanos , Lactente , Recém-Nascido , Exposição Materna/efeitos adversos , Gravidez , Efeitos Tardios da Exposição Pré-Natal , Locos de Características Quantitativas , Fumar/efeitos adversos
16.
Nat Genet ; 49(1): 139-145, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27918533

RESUMO

Genetic risk factors often localize to noncoding regions of the genome with unknown effects on disease etiology. Expression quantitative trait loci (eQTLs) help to explain the regulatory mechanisms underlying these genetic associations. Knowledge of the context that determines the nature and strength of eQTLs may help identify cell types relevant to pathophysiology and the regulatory networks underlying disease. Here we generated peripheral blood RNA-seq data from 2,116 unrelated individuals and systematically identified context-dependent eQTLs using a hypothesis-free strategy that does not require previous knowledge of the identity of the modifiers. Of the 23,060 significant cis-regulated genes (false discovery rate (FDR) ≤ 0.05), 2,743 (12%) showed context-dependent eQTL effects. The majority of these effects were influenced by cell type composition. A set of 145 cis-eQTLs depended on type I interferon signaling. Others were modulated by specific transcription factors binding to the eQTL SNPs.


Assuntos
Proteínas Sanguíneas/genética , Linhagem da Célula/genética , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética , RNA Mensageiro/sangue , Sequências Reguladoras de Ácido Nucleico/genética , Estudos de Coortes , Feminino , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Pessoa de Meia-Idade , RNA Mensageiro/genética
17.
Nat Genet ; 49(1): 131-138, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27918535

RESUMO

Most disease-associated genetic variants are noncoding, making it challenging to design experiments to understand their functional consequences. Identification of expression quantitative trait loci (eQTLs) has been a powerful approach to infer the downstream effects of disease-associated variants, but most of these variants remain unexplained. The analysis of DNA methylation, a key component of the epigenome, offers highly complementary data on the regulatory potential of genomic regions. Here we show that disease-associated variants have widespread effects on DNA methylation in trans that likely reflect differential occupancy of trans binding sites by cis-regulated transcription factors. Using multiple omics data sets from 3,841 Dutch individuals, we identified 1,907 established trait-associated SNPs that affect the methylation levels of 10,141 different CpG sites in trans (false discovery rate (FDR) < 0.05). These included SNPs that affect both the expression of a nearby transcription factor (such as NFKB1, CTCF and NKX2-3) and methylation of its respective binding site across the genome. Trans methylation QTLs effectively expose the downstream effects of disease-associated variants.


Assuntos
Metilação de DNA , Doença/genética , Regulação da Expressão Gênica , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas , Fatores de Transcrição/metabolismo , Sítios de Ligação , Estudos de Coortes , Feminino , Genoma Humano , Estudo de Associação Genômica Ampla , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo
19.
Nature ; 541(7635): 81-86, 2017 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-28002404

RESUMO

Approximately 1.5 billion people worldwide are overweight or affected by obesity, and are at risk of developing type 2 diabetes, cardiovascular disease and related metabolic and inflammatory disturbances. Although the mechanisms linking adiposity to associated clinical conditions are poorly understood, recent studies suggest that adiposity may influence DNA methylation, a key regulator of gene expression and molecular phenotype. Here we use epigenome-wide association to show that body mass index (BMI; a key measure of adiposity) is associated with widespread changes in DNA methylation (187 genetic loci with P < 1 × 10-7, range P = 9.2 × 10-8 to 6.0 × 10-46; n = 10,261 samples). Genetic association analyses demonstrate that the alterations in DNA methylation are predominantly the consequence of adiposity, rather than the cause. We find that methylation loci are enriched for functional genomic features in multiple tissues (P < 0.05), and show that sentinel methylation markers identify gene expression signatures at 38 loci (P < 9.0 × 10-6, range P = 5.5 × 10-6 to 6.1 × 10-35, n = 1,785 samples). The methylation loci identify genes involved in lipid and lipoprotein metabolism, substrate transport and inflammatory pathways. Finally, we show that the disturbances in DNA methylation predict future development of type 2 diabetes (relative risk per 1 standard deviation increase in methylation risk score: 2.3 (2.07-2.56); P = 1.1 × 10-54). Our results provide new insights into the biologic pathways influenced by adiposity, and may enable development of new strategies for prediction and prevention of type 2 diabetes and other adverse clinical consequences of obesity.


Assuntos
Adiposidade/genética , Índice de Massa Corporal , Metilação de DNA/genética , Diabetes Mellitus Tipo 2/genética , Epigênese Genética , Epigenômica , Estudo de Associação Genômica Ampla , Obesidade/genética , Tecido Adiposo/metabolismo , Grupo com Ancestrais do Continente Asiático/genética , Sangue/metabolismo , Estudos de Coortes , Diabetes Mellitus Tipo 2/complicações , Europa (Continente)/etnologia , Grupo com Ancestrais do Continente Europeu/genética , Feminino , Marcadores Genéticos , Predisposição Genética para Doença , Humanos , Índia/etnologia , Masculino , Obesidade/sangue , Obesidade/complicações , Sobrepeso/sangue , Sobrepeso/complicações , Sobrepeso/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA