Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Bot ; 104(11): 1695-1707, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29158343

RESUMO

PREMISE OF THE STUDY: The subtribe Menthinae (Lamiaceae), with 35 genera and 750 species, is among the largest and most economically important subtribes within the mint family. Most genera of Menthinae are found exclusively in the New World, where the group has a virtually continuous distribution ranging from temperate North America to southern South America. In this study, we explored the presence, timing, and origin of amphitropical disjuncts within Menthinae. METHODS: Our analyses were based on a data set consisting of 89 taxa and the nuclear ribosomal DNA markers ITS and ETS. Phylogenetic relationships were determined under maximum likelihood and Bayesian criteria, divergence times were estimated with the program BEAST, and ancestral range estimated with BioGeoBEARS. KEY RESULTS: A North Atlantic Land Bridge migration event at about 10.6 Ma is inferred from western Eurasia to North America. New World Menthinae spread rapidly across North America, and then into Central and South America. Several of the large speciose genera are not monophyletic with nuclear rDNA, a finding mirrored with previous chloroplast DNA results. Three amphitropical disjunctions involving North and southern South America clades, one including a southeastern South American clade with several genera, were inferred to have occurred within the past 5 Myr. CONCLUSIONS: Although three New World Menthinae genera occur in both North and South America, none exhibit an amphitropical disjunction. However, three clades exhibit amphitropical disjunctions, all dating to the early Pliocene, and all involve jump dispersals to either southeastern or southwestern South America from southeastern North America.


Assuntos
Lamiaceae/fisiologia , Dispersão Vegetal , Teorema de Bayes , DNA de Plantas/química , DNA de Plantas/genética , Lamiaceae/genética , América do Norte , Filogeografia , Análise de Sequência de DNA , América do Sul
2.
Am J Bot ; 95(2): 229-40, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21632347

RESUMO

The evolution of the inflorescence head in Asteraceae is important in the diversification of this largest angiosperm family. The aggregation of heads into higher-order capitulescences (secondary heads or syncephalia) is considered evolutionarily advanced. The genera Moscharia, Nassauvia, Polyachyrus, and Triptilion of the subtribe Nassauviinae (Mutisieae) have syncephalia with differing degrees of capitula condensation. ITS and plastid trnL-trnF regions were analyzed separately and together using maximum parsimony and maximum likelihood to examine the evolution of syncephalia in the Nassauviinae. The four genera displaying syncephalia do not form a clade minus taxa without syncephalia, indicating that secondary heads in Nassauviinae have either convergently evolved twice in the subtribe (or, very unlikely) once with multiple reversions. Strong support was obtained for a sister relationship between Leucheria (without syncephalium) and Polyachyrus, and both sister to Moscharia. Nassauvia and Triptilion form a distinct clade but are sister to other genera, Perezia and Panphalea, without syncephalium. Previous hypotheses postulated the evolution from simple to more complex secondary heads. We show that the ancestor of Moscharia, Polyachyrus, and Leucheria, in a more arid habitat, had a complex type of secondary head, and loss of complexity occurred in response to a shift from arid to mesic conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...