Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Syst Evol Microbiol ; 70(7): 4305-4314, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32579104

RESUMO

A new member of the family Flavobacteriaceae was isolated from the biofilm of a stone at Nordstrand, a peninsula at the German North Sea shore. Phylogenetic analysis of the 16S rRNA gene sequence showed that strain ANORD1T was most closely related to the validly described type strains Polaribacter porphyrae LNM-20T (97.0 %) and Polaribacter reichenbachii KMM 6386T (96.9 % 16S rRNA gene sequence similarity) and clustered with Polaribacter gangjinensis K17-16T (96.0 %). Strain ANORD1T was determined to be mesophilic, Gram-negative, non-motile and strictly aerobic. Optimal growth was observed at 20-30 °C, within a salinity range of 2-7 % sea salt and from pH 7-10. Like other type strains of the genus Polaribacter, ANORD1T was tested negative for flexirubin-type pigments, while carotenoid-type pigments were detected. The DNA G+C content of strain ANORD1T was 30.6 mol%. The sole respiratory quinone detected was menaquinone 6 (MK-6). The major fatty acids identified were C15 : 0, iso-C15 : 0, C15 : 1 ω6c and iso-C15 : 0 3-OH. Based on the polyphasic approach, strain ANORD1T represents a novel species in the genus Polaribacter, with the name Polaribacter septentrionalilitoris sp. nov. being proposed. The type strain is ANORD1T (=DSM 110039T=NCIMB 15081T=MTCC 12685T).


Assuntos
Biofilmes , Flavobacteriaceae/classificação , Filogenia , Técnicas de Tipagem Bacteriana , Composição de Bases , Carotenoides/química , DNA Bacteriano/genética , Ácidos Graxos/química , Flavobacteriaceae/isolamento & purificação , Mar do Norte , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Vitamina K 2/análogos & derivados , Vitamina K 2/química
2.
Arch Microbiol ; 202(4): 815-824, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31844948

RESUMO

Kiloniella laminariae is a true marine bacterium and the first member of the family and order, the Kiloniellaceae and Kiloniellales. K. laminariae LD81T (= DSM 19542T) was isolated from the marine macroalga Saccharina latissima and is a mesophilic, typical marine chemoheterotrophic aerobic bacterium with antifungal activity. Phylogenetic analysis of 16S rRNA gene sequence revealed the similarity of K. laminariae LD81T not only with three validly described species of the genus Kiloniella, but also with undescribed isolates and clone sequences from marine samples in the range of 93.6-96.7%. We report on the analysis of the draft genome of this alphaproteobacterium and describe some selected features. The 4.4 Mb genome has a G + C content of 51.4%, contains 4213 coding sequences including 51 RNA genes as well as 4162 protein-coding genes, and is a part of the Genomic Encyclopaedia of Bacteria and Archaea (GEBA) project. The genome provides insights into a number of metabolic properties, such as carbon and sulfur metabolism, and indicates the potential for denitrification and the biosynthesis of secondary metabolites. Comparative genome analysis was performed with K. laminariae LD81T and the animal-associated species Kiloniella majae M56.1T from a spider crab, Kiloniella spongiae MEBiC09566T from a sponge as well as Kiloniella litopenai P1-1 from a white shrimp, which all inhabit quite different marine habitats. The analysis revealed that the K. laminariae LD81T contains 1397 unique genes, more than twice the amount of the other species. Unique among others is a mixed PKS/NRPS biosynthetic gene cluster with similarity to the biosynthetic gene cluster responsible for the production of syringomycin.


Assuntos
Alphaproteobacteria/genética , Organismos Aquáticos/genética , Genômica , Filogenia , Alphaproteobacteria/classificação , Animais , Organismos Aquáticos/classificação , Organismos Aquáticos/microbiologia , Proteínas de Bactérias/genética , Composição de Bases , Feófitas/microbiologia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Especificidade da Espécie
3.
Mar Drugs ; 15(6)2017 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-28629190

RESUMO

The marine genus Pseudoalteromonas is known for its versatile biotechnological potential with respect to the production of antimicrobials and enzymes of industrial interest. We have sequenced the genomes of three Pseudoalteromonas sp. strains isolated from different deep sea sponges on the Illumina MiSeq platform. The isolates have been screened for various industrially important enzymes and comparative genomics has been applied to investigate potential relationships between the isolates and their host organisms, while comparing them to free-living Pseudoalteromonas spp. from shallow and deep sea environments. The genomes of the sponge associated Pseudoalteromonas strains contained much lower levels of potential eukaryotic-like proteins which are known to be enriched in symbiotic sponge associated microorganisms, than might be expected for true sponge symbionts. While all the Pseudoalteromonas shared a large distinct subset of genes, nonetheless the number of unique and accessory genes is quite large and defines the pan-genome as open. Enzymatic screens indicate that a vast array of enzyme activities is expressed by the isolates, including ß-galactosidase, ß-glucosidase, and protease activities. A ß-glucosidase gene from one of the Pseudoalteromonas isolates, strain EB27 was heterologously expressed in Escherichia coli and, following biochemical characterization, the recombinant enzyme was found to be cold-adapted, thermolabile, halotolerant, and alkaline active.


Assuntos
Biotecnologia , Poríferos/microbiologia , Pseudoalteromonas/genética , Animais , Temperatura Baixa , Genoma Bacteriano , Pseudoalteromonas/enzimologia , Proteínas Recombinantes/biossíntese , beta-Galactosidase/genética , beta-Glucosidase/genética
4.
Front Microbiol ; 7: 1027, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27446062

RESUMO

Three different deep sea sponge species, Inflatella pellicula, Poecillastra compressa, and Stelletta normani comprising seven individual samples, retrieved from depths of 760-2900 m below sea level, were investigated using 454 pyrosequencing for their secondary metabolomic potential targeting adenylation domain and ketosynthase domain sequences. The data obtained suggest a diverse microbial origin of nonribosomal peptide synthetases and polyketide synthase fragments that in part correlates with their respective microbial community structures that were previously described and reveals an untapped source of potential novelty. The sequences, especially the ketosynthase fragments, display extensive clade formations which are clearly distinct from sequences hosted in public databases, therefore highlighting the potential of the microbiome of these deep sea sponges to produce potentially novel small-molecule chemistry. Furthermore, sequence similarities to gene clusters known to be involved in the production of many classes of antibiotics and toxins including lipopeptides, glycopeptides, macrolides, and hepatotoxins were also identified.

5.
Curr Opin Biotechnol ; 33: 176-82, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25812477

RESUMO

Research focused on the search for new biosurfactants aims to replace chemical surfactants, which while being cost-effective are ecologically undesirable. Metagenomics can lead to discovery of novel biosurfactants, tackling issues of low production yields. Recent successes include the heterologous production of biosurfactants. The dearth of biosurfactants discovered to date through metagenomics is puzzling given that good screening systems and heterologous host systems are available.


Assuntos
Ecossistema , Metagenômica , Tensoativos/metabolismo , Biodegradação Ambiental , Humanos , Interações Hidrofóbicas e Hidrofílicas , Tensoativos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...