Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Filtros adicionais











País/Região como assunto
Intervalo de ano
2.
Am J Hum Genet ; 105(1): 15-28, 2019 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-31178129

RESUMO

Circulating levels of adiponectin, an adipocyte-secreted protein associated with cardiovascular and metabolic risk, are highly heritable. To gain insights into the biology that regulates adiponectin levels, we performed an exome array meta-analysis of 265,780 genetic variants in 67,739 individuals of European, Hispanic, African American, and East Asian ancestry. We identified 20 loci associated with adiponectin, including 11 that had been reported previously (p < 2 × 10-7). Comparison of exome array variants to regional linkage disequilibrium (LD) patterns and prior genome-wide association study (GWAS) results detected candidate variants (r2 > .60) spanning as much as 900 kb. To identify potential genes and mechanisms through which the previously unreported association signals act to affect adiponectin levels, we assessed cross-trait associations, expression quantitative trait loci in subcutaneous adipose, and biological pathways of nearby genes. Eight of the nine loci were also associated (p < 1 × 10-4) with at least one obesity or lipid trait. Candidate genes include PRKAR2A, PTH1R, and HDAC9, which have been suggested to play roles in adipocyte differentiation or bone marrow adipose tissue. Taken together, these findings provide further insights into the processes that influence circulating adiponectin levels.

3.
Nat Genet ; 51(3): 452-469, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30778226

RESUMO

Body-fat distribution is a risk factor for adverse cardiovascular health consequences. We analyzed the association of body-fat distribution, assessed by waist-to-hip ratio adjusted for body mass index, with 228,985 predicted coding and splice site variants available on exome arrays in up to 344,369 individuals from five major ancestries (discovery) and 132,177 European-ancestry individuals (validation). We identified 15 common (minor allele frequency, MAF ≥5%) and nine low-frequency or rare (MAF <5%) coding novel variants. Pathway/gene set enrichment analyses identified lipid particle, adiponectin, abnormal white adipose tissue physiology and bone development and morphology as important contributors to fat distribution, while cross-trait associations highlight cardiometabolic traits. In functional follow-up analyses, specifically in Drosophila RNAi-knockdowns, we observed a significant increase in the total body triglyceride levels for two genes (DNAH10 and PLXND1). We implicate novel genes in fat distribution, stressing the importance of interrogating low-frequency and protein-coding variants.


Assuntos
Predisposição Genética para Doença/genética , Variação Genética/genética , Homeostase/genética , Lipídeos/genética , Proteínas/genética , Animais , Distribuição da Gordura Corporal/métodos , Índice de Massa Corporal , Estudos de Casos e Controles , Drosophila/genética , Exoma/genética , Feminino , Frequência do Gene/genética , Estudo de Associação Genômica Ampla/métodos , Humanos , Masculino , Fatores de Risco , Relação Cintura-Quadril/métodos
4.
Diabetologia ; 62(2): 292-305, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30547231

RESUMO

AIMS/HYPOTHESIS: Identifying rare coding variants associated with albuminuria may open new avenues for preventing chronic kidney disease and end-stage renal disease, which are highly prevalent in individuals with diabetes. Efforts to identify genetic susceptibility variants for albuminuria have so far been limited, with the majority of studies focusing on common variants. METHODS: We performed an exome-wide association study to identify coding variants in a two-stage (discovery and replication) approach. Data from 33,985 individuals of European ancestry (15,872 with and 18,113 without diabetes) and 2605 Greenlanders were included. RESULTS: We identified a rare (minor allele frequency [MAF]: 0.8%) missense (A1690V) variant in CUBN (rs141640975, ß = 0.27, p = 1.3 × 10-11) associated with albuminuria as a continuous measure in the combined European meta-analysis. The presence of each rare allele of the variant was associated with a 6.4% increase in albuminuria. The rare CUBN variant had an effect that was three times stronger in individuals with type 2 diabetes compared with those without (pinteraction = 7.0 × 10-4, ß with diabetes = 0.69, ß without diabetes = 0.20) in the discovery meta-analysis. Gene-aggregate tests based on rare and common variants identified three additional genes associated with albuminuria (HES1, CDC73 and GRM5) after multiple testing correction (pBonferroni < 2.7 × 10-6). CONCLUSIONS/INTERPRETATION: The current study identifies a rare coding variant in the CUBN locus and other potential genes associated with albuminuria in individuals with and without diabetes. These genes have been implicated in renal and cardiovascular dysfunction. The findings provide new insights into the genetic architecture of albuminuria and highlight target genes and pathways for the prevention of diabetes-related kidney disease.


Assuntos
Albuminúria/genética , Diabetes Mellitus/genética , Nefropatias Diabéticas/genética , Receptores de Superfície Celular/genética , Alelos , Grupo com Ancestrais do Continente Europeu , Frequência do Gene , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Polimorfismo de Nucleotídeo Único
5.
Nat Genet ; 50(11): 1505-1513, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30297969

RESUMO

We expanded GWAS discovery for type 2 diabetes (T2D) by combining data from 898,130 European-descent individuals (9% cases), after imputation to high-density reference panels. With these data, we (i) extend the inventory of T2D-risk variants (243 loci, 135 newly implicated in T2D predisposition, comprising 403 distinct association signals); (ii) enrich discovery of lower-frequency risk alleles (80 index variants with minor allele frequency <5%, 14 with estimated allelic odds ratio >2); (iii) substantially improve fine-mapping of causal variants (at 51 signals, one variant accounted for >80% posterior probability of association (PPA)); (iv) extend fine-mapping through integration of tissue-specific epigenomic information (islet regulatory annotations extend the number of variants with PPA >80% to 73); (v) highlight validated therapeutic targets (18 genes with associations attributable to coding variants); and (vi) demonstrate enhanced potential for clinical translation (genome-wide chip heritability explains 18% of T2D risk; individuals in the extremes of a T2D polygenic risk score differ more than ninefold in prevalence).

6.
Wellcome Open Res ; 3: 4, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30175238

RESUMO

Background: Over 90 regions of the genome have been associated with lung function to date, many of which have also been implicated in chronic obstructive pulmonary disease. Methods: We carried out meta-analyses of exome array data and three lung function measures: forced expiratory volume in one second (FEV 1), forced vital capacity (FVC) and the ratio of FEV 1 to FVC (FEV 1/FVC). These analyses by the SpiroMeta and CHARGE consortia included 60,749 individuals of European ancestry from 23 studies, and 7,721 individuals of African Ancestry from 5 studies in the discovery stage, with follow-up in up to 111,556 independent individuals. Results: We identified significant (P<2·8x10 -7) associations with six SNPs: a nonsynonymous variant in RPAP1, which is predicted to be damaging, three intronic SNPs ( SEC24C, CASC17 and UQCC1) and two intergenic SNPs near to LY86 and FGF10. Expression quantitative trait loci analyses found evidence for regulation of gene expression at three signals and implicated several genes, including TYRO3 and PLAU. Conclusions: Further interrogation of these loci could provide greater understanding of the determinants of lung function and pulmonary disease.

7.
Genome Biol ; 19(1): 87, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-30012220

RESUMO

BACKGROUND: Genome-wide association studies conducted on QRS duration, an electrocardiographic measurement associated with heart failure and sudden cardiac death, have led to novel biological insights into cardiac function. However, the variants identified fall predominantly in non-coding regions and their underlying mechanisms remain unclear. RESULTS: Here, we identify putative functional coding variation associated with changes in the QRS interval duration by combining Illumina HumanExome BeadChip genotype data from 77,898 participants of European ancestry and 7695 of African descent in our discovery cohort, followed by replication in 111,874 individuals of European ancestry from the UK Biobank and deCODE cohorts. We identify ten novel loci, seven within coding regions, including ADAMTS6, significantly associated with QRS duration in gene-based analyses. ADAMTS6 encodes a secreted metalloprotease of currently unknown function. In vitro validation analysis shows that the QRS-associated variants lead to impaired ADAMTS6 secretion and loss-of function analysis in mice demonstrates a previously unappreciated role for ADAMTS6 in connexin 43 gap junction expression, which is essential for myocardial conduction. CONCLUSIONS: Our approach identifies novel coding and non-coding variants underlying ventricular depolarization and provides a possible mechanism for the ADAMTS6-associated conduction changes.


Assuntos
Proteínas ADAMTS/genética , Conexina 43/genética , Exoma , Loci Gênicos , Sistema de Condução Cardíaco/metabolismo , Miocárdio/metabolismo , Grupo com Ancestrais do Continente Africano , Animais , Eletrocardiografia , Grupo com Ancestrais do Continente Europeu , Feminino , Expressão Gênica , Perfilação da Expressão Gênica , Estudo de Associação Genômica Ampla , Sistema de Condução Cardíaco/fisiopatologia , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Miocárdio/patologia , Fases de Leitura Aberta , Polimorfismo de Nucleotídeo Único , Sequenciamento Completo do Exoma
8.
Circ Genom Precis Med ; 11(1): e001758, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29874175

RESUMO

BACKGROUND: QT interval, measured through a standard ECG, captures the time it takes for the cardiac ventricles to depolarize and repolarize. JT interval is the component of the QT interval that reflects ventricular repolarization alone. Prolonged QT interval has been linked to higher risk of sudden cardiac arrest. METHODS AND RESULTS: We performed an ExomeChip-wide analysis for both QT and JT intervals, including 209 449 variants, both common and rare, in 17 341 genes from the Illumina Infinium HumanExome BeadChip. We identified 10 loci that modulate QT and JT interval duration that have not been previously reported in the literature using single-variant statistical models in a meta-analysis of 95 626 individuals from 23 cohorts (comprised 83 884 European ancestry individuals, 9610 blacks, 1382 Hispanics, and 750 Asians). This brings the total number of ventricular repolarization associated loci to 45. In addition, our approach of using coding variants has highlighted the role of 17 specific genes for involvement in ventricular repolarization, 7 of which are in novel loci. CONCLUSIONS: Our analyses show a role for myocyte internal structure and interconnections in modulating QT interval duration, adding to previous known roles of potassium, sodium, and calcium ion regulation, as well as autonomic control. We anticipate that these discoveries will open new paths to the goal of making novel remedies for the prevention of lethal ventricular arrhythmias and sudden cardiac arrest.

9.
Circ Genom Precis Med ; 11(5): e002037, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29748316

RESUMO

BACKGROUND: Electrical conduction from the cardiac sinoatrial node to the ventricles is critical for normal heart function. Genome-wide association studies have identified more than a dozen common genetic loci that are associated with PR interval. However, it is unclear whether rare and low-frequency variants also contribute to PR interval heritability. METHODS: We performed large-scale meta-analyses of the PR interval that included 83 367 participants of European ancestry and 9436 of African ancestry. We examined both common and rare variants associated with the PR interval. RESULTS: We identified 31 genetic loci that were significantly associated with PR interval after Bonferroni correction (P<1.2×10-6), including 11 novel loci that have not been reported previously. Many of these loci are involved in heart morphogenesis. In gene-based analysis, we found that multiple rare variants at MYH6 (P=5.9×10-11) and SCN5A (P=1.1×10-7) were associated with PR interval. SCN5A locus also was implicated in the common variant analysis, whereas MYH6 was a novel locus. CONCLUSIONS: We identified common variants at 11 novel loci and rare variants within 2 gene regions that were significantly associated with PR interval. Our findings provide novel insights to the current understanding of atrioventricular conduction, which is critical for cardiac activity and an important determinant of health.

10.
Nat Genet ; 49(12): 1758-1766, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29083408

RESUMO

We screened variants on an exome-focused genotyping array in >300,000 participants (replication in >280,000 participants) and identified 444 independent variants in 250 loci significantly associated with total cholesterol (TC), high-density-lipoprotein cholesterol (HDL-C), low-density-lipoprotein cholesterol (LDL-C), and/or triglycerides (TG). At two loci (JAK2 and A1CF), experimental analysis in mice showed lipid changes consistent with the human data. We also found that: (i) beta-thalassemia trait carriers displayed lower TC and were protected from coronary artery disease (CAD); (ii) excluding the CETP locus, there was not a predictable relationship between plasma HDL-C and risk for age-related macular degeneration; (iii) only some mechanisms of lowering LDL-C appeared to increase risk for type 2 diabetes (T2D); and (iv) TG-lowering alleles involved in hepatic production of TG-rich lipoproteins (TM6SF2 and PNPLA3) tracked with higher liver fat, higher risk for T2D, and lower risk for CAD, whereas TG-lowering alleles involved in peripheral lipolysis (LPL and ANGPTL4) had no effect on liver fat but decreased risks for both T2D and CAD.


Assuntos
Exoma/genética , Estudos de Associação Genética/métodos , Variação Genética , Lipídeos/sangue , Doença da Artéria Coronariana/sangue , Doença da Artéria Coronariana/genética , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/genética , Predisposição Genética para Doença/genética , Genótipo , Humanos , Degeneração Macular/sangue , Degeneração Macular/genética , Fenótipo , Fatores de Risco
11.
Circ Cardiovasc Genet ; 10(5)2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29030403

RESUMO

BACKGROUND: Genome-wide association studies have recently identified >400 loci that harbor DNA sequence variants that influence blood pressure (BP). Our earlier studies identified and validated 56 single nucleotide variants (SNVs) associated with BP from meta-analyses of exome chip genotype data. An additional 100 variants yielded suggestive evidence of association. METHODS AND RESULTS: Here, we augment the sample with 140 886 European individuals from the UK Biobank, in whom 77 of the 100 suggestive SNVs were available for association analysis with systolic BP or diastolic BP or pulse pressure. We performed 2 meta-analyses, one in individuals of European, South Asian, African, and Hispanic descent (pan-ancestry, ≈475 000), and the other in the subset of individuals of European descent (≈423 000). Twenty-one SNVs were genome-wide significant (P<5×10-8) for BP, of which 4 are new BP loci: rs9678851 (missense, SLC4A1AP), rs7437940 (AFAP1), rs13303 (missense, STAB1), and rs1055144 (7p15.2). In addition, we identified a potentially independent novel BP-associated SNV, rs3416322 (missense, SYNPO2L) at a known locus, uncorrelated with the previously reported SNVs. Two SNVs are associated with expression levels of nearby genes, and SNVs at 3 loci are associated with other traits. One SNV with a minor allele frequency <0.01, (rs3025380 at DBH) was genome-wide significant. CONCLUSIONS: We report 4 novel loci associated with BP regulation, and 1 independent variant at an established BP locus. This analysis highlights several candidate genes with variation that alter protein function or gene expression for potential follow-up.


Assuntos
Pressão Sanguínea/genética , Loci Gênicos , Antiporters/genética , Moléculas de Adesão Celular Neuronais/genética , Bases de Dados Factuais , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Proteínas dos Microfilamentos/genética , Fenótipo , Polimorfismo de Nucleotídeo Único , Receptores de Retorno de Linfócitos/genética
12.
Nature ; 548(7665): 87-91, 2017 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-28746312

RESUMO

Hundreds of thousands of human genomes are now being sequenced to characterize genetic variation and use this information to augment association mapping studies of complex disorders and other phenotypic traits. Genetic variation is identified mainly by mapping short reads to the reference genome or by performing local assembly. However, these approaches are biased against discovery of structural variants and variation in the more complex parts of the genome. Hence, large-scale de novo assembly is needed. Here we show that it is possible to construct excellent de novo assemblies from high-coverage sequencing with mate-pair libraries extending up to 20 kilobases. We report de novo assemblies of 150 individuals (50 trios) from the GenomeDenmark project. The quality of these assemblies is similar to those obtained using the more expensive long-read technology. We use the assemblies to identify a rich set of structural variants including many novel insertions and demonstrate how this variant catalogue enables further deciphering of known association mapping signals. We leverage the assemblies to provide 100 completely resolved major histocompatibility complex haplotypes and to resolve major parts of the Y chromosome. Our study provides a regional reference genome that we expect will improve the power of future association mapping studies and hence pave the way for precision medicine initiatives, which now are being launched in many countries including Denmark.


Assuntos
Variação Genética/genética , Genética Populacional/normas , Genoma Humano/genética , Genômica/normas , Análise de Sequência de DNA/normas , Adulto , Alelos , Criança , Cromossomos Humanos Y/genética , Dinamarca , Feminino , Haplótipos/genética , Humanos , Complexo Principal de Histocompatibilidade/genética , Masculino , Idade Materna , Taxa de Mutação , Idade Paterna , Mutação Puntual/genética , Padrões de Referência
13.
Elife ; 62017 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-28414270

RESUMO

MFN2 encodes mitofusin 2, a membrane-bound mediator of mitochondrial membrane fusion and inter-organelle communication. MFN2 mutations cause axonal neuropathy, with associated lipodystrophy only occasionally noted, however homozygosity for the p.Arg707Trp mutation was recently associated with upper body adipose overgrowth. We describe similar massive adipose overgrowth with suppressed leptin expression in four further patients with biallelic MFN2 mutations and at least one p.Arg707Trp allele. Overgrown tissue was composed of normal-sized, UCP1-negative unilocular adipocytes, with mitochondrial network fragmentation, disorganised cristae, and increased autophagosomes. There was strong transcriptional evidence of mitochondrial stress signalling, increased protein synthesis, and suppression of signatures of cell death in affected tissue, whereas mitochondrial morphology and gene expression were normal in skin fibroblasts. These findings suggest that specific MFN2 mutations cause tissue-selective mitochondrial dysfunction with increased adipocyte proliferation and survival, confirm a novel form of excess adiposity with paradoxical suppression of leptin expression, and suggest potential targeted therapies.


Assuntos
Tecido Adiposo/fisiopatologia , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Hiperplasia/fisiopatologia , Leptina/biossíntese , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Mutação , Corpo Humano , Humanos
14.
Diabetes ; 66(7): 2019-2032, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28341696

RESUMO

To identify novel coding association signals and facilitate characterization of mechanisms influencing glycemic traits and type 2 diabetes risk, we analyzed 109,215 variants derived from exome array genotyping together with an additional 390,225 variants from exome sequence in up to 39,339 normoglycemic individuals from five ancestry groups. We identified a novel association between the coding variant (p.Pro50Thr) in AKT2 and fasting plasma insulin (FI), a gene in which rare fully penetrant mutations are causal for monogenic glycemic disorders. The low-frequency allele is associated with a 12% increase in FI levels. This variant is present at 1.1% frequency in Finns but virtually absent in individuals from other ancestries. Carriers of the FI-increasing allele had increased 2-h insulin values, decreased insulin sensitivity, and increased risk of type 2 diabetes (odds ratio 1.05). In cellular studies, the AKT2-Thr50 protein exhibited a partial loss of function. We extend the allelic spectrum for coding variants in AKT2 associated with disorders of glucose homeostasis and demonstrate bidirectional effects of variants within the pleckstrin homology domain of AKT2.


Assuntos
Diabetes Mellitus Tipo 2/genética , Grupo com Ancestrais do Continente Europeu/genética , Jejum/metabolismo , Resistência à Insulina/genética , Insulina/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Afro-Americanos/genética , Alelos , Grupo com Ancestrais do Continente Asiático/genética , Estudos de Casos e Controles , Diabetes Mellitus Tipo 2/metabolismo , Finlândia , Frequência do Gene , Predisposição Genética para Doença , Genótipo , Hispano-Americanos/genética , Humanos , Razão de Chances
15.
J Med Genet ; 54(3): 166-175, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27627987

RESUMO

BACKGROUND: Levels of serum thyroid-stimulating hormone (TSH) indicate thyroid function, because thyroid hormone negatively controls TSH release. Genetic variants in the vascular endothelial growth factor A (VEGFA) gene are associated with TSH levels. The aim of this study was to characterise the association of VEGFA variants with TSH in a Danish cohort and to identify and characterise functional variants. METHODS: We performed an association study of the VEGFA locus for circulating TSH levels in 8445 Danish individuals. Lead variants were tested for allele-specific effects in vitro using luciferase reporter and gel-shift assays. RESULTS: Four SNPs in VEGFA were associated with circulating TSH (rs9472138, rs881858, rs943080 and rs4711751). For rs881858, the presence of each G-allele was associated with a corresponding decrease in TSH levels of 2.3% (p=8.4×10-9) and an increase in circulating free T4 levels (p=0.0014). The SNP rs881858 is located in a binding site for CHOP (C/EBP homology protein) and c/EBPß (ccaat enhancer binding protein ß). Reporter-gene analysis showed increased basal enhancer activity of the rs881858 A-allele versus the G-allele (34.5±9.9% (average±SEM), p=0.0012), while co-expression of CHOP effectively suppressed the rs881858 A-allele activity. The A-allele showed stronger binding to CHOP in gel-shift assays. CONCLUSIONS: VEGF is an important angiogenic signal required for tissue expansion. We show that VEGFA variation giving allele-specific response to transcription factors with overlapping binding sites associate closely with circulating TSH levels. Because CHOP is induced by several types of intracellular stress, this indicates that cellular stress could be involved in the normal or pathophysiological response of the thyroid to TSH. TRIAL REGISTRATION NUMBER: NCT00289237, NCT00316667; Results.


Assuntos
Isquemia Miocárdica/genética , Tireotropina/sangue , Fator de Transcrição CHOP/genética , Fator A de Crescimento do Endotélio Vascular/genética , Dinamarca , Elementos Facilitadores Genéticos , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Heterozigoto , Humanos , Masculino , Pessoa de Meia-Idade , Isquemia Miocárdica/sangue , Isquemia Miocárdica/patologia , Polimorfismo de Nucleotídeo Único , Ligação Proteica/genética , Glândula Tireoide/metabolismo , Glândula Tireoide/patologia , Tireotropina/deficiência , Tireotropina/genética
16.
Nat Genet ; 48(10): 1151-1161, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27618447

RESUMO

High blood pressure is a major risk factor for cardiovascular disease and premature death. However, there is limited knowledge on specific causal genes and pathways. To better understand the genetics of blood pressure, we genotyped 242,296 rare, low-frequency and common genetic variants in up to 192,763 individuals and used ∼155,063 samples for independent replication. We identified 30 new blood pressure- or hypertension-associated genetic regions in the general population, including 3 rare missense variants in RBM47, COL21A1 and RRAS with larger effects (>1.5 mm Hg/allele) than common variants. Multiple rare nonsense and missense variant associations were found in A2ML1, and a low-frequency nonsense variant in ENPEP was identified. Our data extend the spectrum of allelic variation underlying blood pressure traits and hypertension, provide new insights into the pathophysiology of hypertension and indicate new targets for clinical intervention.


Assuntos
Pressão Sanguínea/genética , Variação Genética , Hipertensão/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Genótipo , Humanos
17.
Sci Transl Med ; 8(341): 341ra76, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27252175

RESUMO

Regulatory authorities have indicated that new drugs to treat type 2 diabetes (T2D) should not be associated with an unacceptable increase in cardiovascular risk. Human genetics may be able to guide development of antidiabetic therapies by predicting cardiovascular and other health endpoints. We therefore investigated the association of variants in six genes that encode drug targets for obesity or T2D with a range of metabolic traits in up to 11,806 individuals by targeted exome sequencing and follow-up in 39,979 individuals by targeted genotyping, with additional in silico follow-up in consortia. We used these data to first compare associations of variants in genes encoding drug targets with the effects of pharmacological manipulation of those targets in clinical trials. We then tested the association of those variants with disease outcomes, including coronary heart disease, to predict cardiovascular safety of these agents. A low-frequency missense variant (Ala316Thr; rs10305492) in the gene encoding glucagon-like peptide-1 receptor (GLP1R), the target of GLP1R agonists, was associated with lower fasting glucose and T2D risk, consistent with GLP1R agonist therapies. The minor allele was also associated with protection against heart disease, thus providing evidence that GLP1R agonists are not likely to be associated with an unacceptable increase in cardiovascular risk. Our results provide an encouraging signal that these agents may be associated with benefit, a question currently being addressed in randomized controlled trials. Genetic variants associated with metabolic traits and multiple disease outcomes can be used to validate therapeutic targets at an early stage in the drug development process.


Assuntos
Doença das Coronárias/genética , Receptor do Peptídeo Semelhante ao Glucagon 1/genética , Alelos , Diabetes Mellitus Tipo 2/genética , Dipeptidil Peptidase 4/genética , Genótipo , Humanos , Obesidade/genética , Receptor CB2 de Canabinoide/genética , Receptor 5-HT2C de Serotonina/genética , Receptores de Somatostatina/genética , Transportador 1 de Glucose-Sódio/genética
18.
Am J Hum Genet ; 99(1): 8-21, 2016 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-27346685

RESUMO

Red blood cell (RBC) traits are important heritable clinical biomarkers and modifiers of disease severity. To identify coding genetic variants associated with these traits, we conducted meta-analyses of seven RBC phenotypes in 130,273 multi-ethnic individuals from studies genotyped on an exome array. After conditional analyses and replication in 27,480 independent individuals, we identified 16 new RBC variants. We found low-frequency missense variants in MAP1A (rs55707100, minor allele frequency [MAF] = 3.3%, p = 2 × 10(-10) for hemoglobin [HGB]) and HNF4A (rs1800961, MAF = 2.4%, p < 3 × 10(-8) for hematocrit [HCT] and HGB). In African Americans, we identified a nonsense variant in CD36 associated with higher RBC distribution width (rs3211938, MAF = 8.7%, p = 7 × 10(-11)) and showed that it is associated with lower CD36 expression and strong allelic imbalance in ex vivo differentiated human erythroblasts. We also identified a rare missense variant in ALAS2 (rs201062903, MAF = 0.2%) associated with lower mean corpuscular volume and mean corpuscular hemoglobin (p < 8 × 10(-9)). Mendelian mutations in ALAS2 are a cause of sideroblastic anemia and erythropoietic protoporphyria. Gene-based testing highlighted three rare missense variants in PKLR, a gene mutated in Mendelian non-spherocytic hemolytic anemia, associated with HGB and HCT (SKAT p < 8 × 10(-7)). These rare, low-frequency, and common RBC variants showed pleiotropy, being also associated with platelet, white blood cell, and lipid traits. Our association results and functional annotation suggest the involvement of new genes in human erythropoiesis. We also confirm that rare and low-frequency variants play a role in the architecture of complex human traits, although their phenotypic effect is generally smaller than originally anticipated.


Assuntos
Eritrócitos/citologia , Eritropoese/genética , Exoma/genética , Pleiotropia Genética , Variação Genética/genética , Genótipo , Afro-Americanos/genética , Desequilíbrio Alélico , Índices de Eritrócitos , Eritrócitos/metabolismo , Frequência do Gene , Hematócrito , Hemoglobinas/genética , Humanos , Locos de Características Quantitativas/genética
19.
Nat Commun ; 6: 5969, 2015 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-25597990

RESUMO

Building a population-specific catalogue of single nucleotide variants (SNVs), indels and structural variants (SVs) with frequencies, termed a national pan-genome, is critical for further advancing clinical and public health genetics in large cohorts. Here we report a Danish pan-genome obtained from sequencing 10 trios to high depth (50 × ). We report 536k novel SNVs and 283k novel short indels from mapping approaches and develop a population-wide de novo assembly approach to identify 132k novel indels larger than 10 nucleotides with low false discovery rates. We identify a higher proportion of indels and SVs than previous efforts showing the merits of high coverage and de novo assembly approaches. In addition, we use trio information to identify de novo mutations and use a probabilistic method to provide direct estimates of 1.27e-8 and 1.5e-9 per nucleotide per generation for SNVs and indels, respectively.


Assuntos
Genoma Humano/genética , Algoritmos , Humanos , Taxa de Mutação , Polimorfismo de Nucleotídeo Único/genética , Análise de Sequência de DNA/métodos
20.
PLoS Genet ; 11(1): e1004876, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25625282

RESUMO

Genome wide association studies (GWAS) for fasting glucose (FG) and insulin (FI) have identified common variant signals which explain 4.8% and 1.2% of trait variance, respectively. It is hypothesized that low-frequency and rare variants could contribute substantially to unexplained genetic variance. To test this, we analyzed exome-array data from up to 33,231 non-diabetic individuals of European ancestry. We found exome-wide significant (P<5×10-7) evidence for two loci not previously highlighted by common variant GWAS: GLP1R (p.Ala316Thr, minor allele frequency (MAF)=1.5%) influencing FG levels, and URB2 (p.Glu594Val, MAF = 0.1%) influencing FI levels. Coding variant associations can highlight potential effector genes at (non-coding) GWAS signals. At the G6PC2/ABCB11 locus, we identified multiple coding variants in G6PC2 (p.Val219Leu, p.His177Tyr, and p.Tyr207Ser) influencing FG levels, conditionally independent of each other and the non-coding GWAS signal. In vitro assays demonstrate that these associated coding alleles result in reduced protein abundance via proteasomal degradation, establishing G6PC2 as an effector gene at this locus. Reconciliation of single-variant associations and functional effects was only possible when haplotype phase was considered. In contrast to earlier reports suggesting that, paradoxically, glucose-raising alleles at this locus are protective against type 2 diabetes (T2D), the p.Val219Leu G6PC2 variant displayed a modest but directionally consistent association with T2D risk. Coding variant associations for glycemic traits in GWAS signals highlight PCSK1, RREB1, and ZHX3 as likely effector transcripts. These coding variant association signals do not have a major impact on the trait variance explained, but they do provide valuable biological insights.


Assuntos
Glicemia/genética , Diabetes Mellitus Tipo 2/genética , Glucose-6-Fosfatase/genética , Insulina/sangue , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/patologia , Exoma/genética , Frequência do Gene , Estudo de Associação Genômica Ampla , Receptor do Peptídeo Semelhante ao Glucagon 1 , Índice Glicêmico/genética , Humanos , Insulina/genética , Polimorfismo de Nucleotídeo Único , Receptores de Glucagon/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA