Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 21(17)2020 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-32867146

RESUMO

The tripeptide NH2-Gly-His-Lys-COOH (GHK), cis-urocanic acid (cis-UCA) and Cu(II) ions are physiological constituents of the human body and they co-occur (e.g., in the skin and the plasma). While GHK is known as Cu(II)-binding molecule, we found that urocanic acid also coordinates Cu(II) ions. Furthermore, both ligands create ternary Cu(II) complex being probably physiologically functional species. Regarding the natural concentrations of the studied molecules in some human tissues, together with the affinities reported here, we conclude that the ternary complex [GHK][Cu(II)][cis-urocanic acid] may be partly responsible for biological effects of GHK and urocanic acid described in the literature.

2.
Inorg Chem ; 2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32924459

RESUMO

The Aß5-x peptides (x = 38, 40, 42) are minor Aß species in normal brains but elevated upon the application of inhibitors of Aß processing enzymes. They are interesting from the point of view of coordination chemistry for the presence of an Arg-His metal binding sequence at their N-terminus capable of forming a 3-nitrogen (3N) three-coordinate chelate system. Similar sequences in other bioactive peptides were shown to bind Cu(II) ions in biological systems. Therefore, we investigated Cu(II) complex formation and reactivity of a series of truncated Aß5-x peptide models comprising the metal binding site: Aß5-9, Aß5-12, Aß5-12Y10F, and Aß5-16. Using CD and UV-vis spectroscopies and potentiometry, we found that all peptides coordinated the Cu(II) ion with substantial affinities higher than 3 × 1012 M-1 at pH 7.4 for Aß5-9 and Aß5-12. This affinity was elevated 3-fold in Aß5-16 by the formation of the internal macrochelate with the fourth coordination site occupied by the imidazole nitrogen of the His13 or His14 residue. A much higher boost of affinity could be achieved in Aß5-9 and Aß5-12 by adding appropriate amounts of the external imidazole ligand. The 3N Cu-Aß5-x complexes could be irreversibly reduced to Cu(I) at about -0.6 V vs Ag/AgCl and oxidized to Cu(III) at about 1.2 V vs Ag/AgCl. The internal or external imidazole coordination to the 3N core resulted in a slight destabilization of the Cu(I) state and stabilization of the Cu(III) state. Taken together these results indicate that Aß5-x peptides, which bind Cu(II) ions much more strongly than Aß1-x peptides and only slightly weaker than Aß4-x peptides could interfere with Cu(II) handling by these peptides, adding to copper dyshomeostasis in Alzheimer brains.

3.
Angew Chem Int Ed Engl ; 59(28): 11234-11239, 2020 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-32267054

RESUMO

The amino-terminal copper and nickel/N-terminal site (ATCUN/NTS) present in proteins and bioactive peptides exhibits high affinity towards CuII ions and have been implicated in human copper physiology. Little is known, however, about the rate and exact mechanism of formation of such complexes. We used the stopped-flow and microsecond freeze-hyperquenching (MHQ) techniques supported by steady-state spectroscopic and electrochemical data to demonstrate the formation of partially coordinated intermediate CuII complexes formed by glycyl-glycyl-histidine (GGH) peptide, the simplest ATCUN/NTS model. One of these novel intermediates, characterized by two-nitrogen coordination, t1/2 ≈100 ms at pH 6.0 and the ability to maintain the CuII /CuI redox pair is the best candidate for the long-sought reactive species in extracellular copper transport.

4.
Chembiochem ; 21(3): 331-334, 2020 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-31298451

RESUMO

The apparent affinity of human serum albumin (HSA) for divalent copper has long been the subject of great interest, due to its presumed role as the major Cu2+ -binding ligand in blood and cerebrospinal fluid. Using a combination of electronic absorption, circular dichroism and room-temperature electron paramagnetic resonance spectroscopies, together with potentiometric titrations, we competed the tripeptide GGH against HSA to reveal a conditional binding constant of log c K Cu Cu ( HSA ) =13.02±0.05 at pH 7.4. This rigorously determined value of the Cu2+ affinity has important implications for understanding the extracellular distribution of copper.

5.
Metallomics ; 11(11): 1800-1804, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31657408

RESUMO

Model peptides relevant to hCtr1 transchelate CuI from the anti-tumour [CuI(PTA)4]+ complex before metal internalization into tumor cells. ESI(+)MS experiments corroborated by DFT calculations indicate that tetracoordinated-CuII and linear-CuI arrangements of in situ generated copper-peptide products play a crucial role in promoting the transfer of copper from the terminal MDH portion into adjacent HSH peptide sequence.

6.
Chem Commun (Camb) ; 55(56): 8110-8113, 2019 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-31233054

RESUMO

Copper(ii) forms well-known and stable complexes with peptides having histidine at position 2 (Xxx-His) or 3 (Xxx-Zzz-His). Their properties differ considerably due to the histidine positioning. Here we report that in the hybrid motif Xxx-His-His, the Cu(ii)-complexes can be switched between the Xxx-His and the Xxx-Zzz-His coordination modes by addition of external ligands.

7.
Inorg Chem ; 58(1): 932-943, 2019 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-30582328

RESUMO

The catabolism of ß-amyloid (Aß) is carried out by numerous endopeptidases including neprilysin, which hydrolyzes peptide bonds preceding positions 4, 10, and 12 to yield Aß4-9 and a minor Aß12- x species. Alternative processing of the amyloid precursor protein by ß-secretase also generates the Aß11- x species. All these peptides contain a Xxx-Yyy-His sequence, also known as an ATCUN or NTS motif, making them strong chelators of Cu(II) ions. We synthesized the corresponding peptides, Phe-Arg-His-Asp-Ser-Gly-OH (Aß4-9), Glu-Val-His-His-Gln-Lys-am (Aß11-16), Val-His-His-Gln-Lys-am (Aß12-16), and pGlu-Val-His-His-Gln-Lys-am (pAß11-16), and investigated their Cu(II) binding properties using potentiometry, and UV-vis, circular dichroism, and electron paramagnetic resonance spectroscopies. We found that the three peptides with unmodified N-termini formed square-planar Cu(II) complexes at pH 7.4 with analogous geometries but significantly varied Kd values of 6.6 fM (Aß4-9), 9.5 fM (Aß12-16), and 1.8 pM (Aß11-16). Cyclization of the N-terminal Glu11 residue to the pyroglutamate species pAß11-16 dramatically reduced the affinity (5.8 nM). The Cu(II) affinities of Aß4-9 and Aß12-16 are the highest among the Cu(II) complexes of Aß peptides. Using fluorescence spectroscopy, we demonstrated that the Cu(II) exchange between the Phe-Arg-His and Val-His-His motifs is very slow, on the order of days. These results are discussed in terms of the relevance of Aß4-9, a major Cu(II) binding Aß fragment generated by neprilysin, as a possible Cu(II) carrier in the brain.


Assuntos
Peptídeos beta-Amiloides/química , Quelantes/química , Cobre/química , Oligopeptídeos/química , Fragmentos de Peptídeos/química , Motivos de Aminoácidos , Quelantes/síntese química , Complexos de Coordenação/química , Estrutura Molecular , Neprilisina/química , Oligopeptídeos/síntese química , Fragmentos de Peptídeos/síntese química
8.
Metallomics ; 10(12): 1723-1727, 2018 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-30489586

RESUMO

Human cells acquire copper primarily via the copper transporter 1 protein, hCtr1. We demonstrate that at extracellular pH 7.4 CuII is bound to the model peptide hCtr11-14via an ATCUN motif and such complexes are strong enough to collect CuII from albumin, supporting the potential physiological role of CuII binding to hCtr1.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Cobre/metabolismo , Fragmentos de Peptídeos/metabolismo , Albumina Sérica Humana/metabolismo , Sítios de Ligação , Transporte Biológico , Proteínas de Transporte de Cátions/química , Cobre/química , Transportador de Cobre 1 , Humanos , Modelos Moleculares , Ligação Proteica , Albumina Sérica Humana/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA