Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Mais filtros

Base de dados
Intervalo de ano de publicação
Thromb Res ; 182: 64-74, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31450010


INTRODUCTION: The TF-FVIIa complex is the primary activator of coagulation. Elevated levels of microvesicle (MV) bearing tissue factor (TF)-dependent procoagulant activity are detectable in patients with an increased risk of thrombosis. Several methods have been described to measure MV TF activity but they are hampered by limited sensitivity and specificity. The aim of this work was to increase the sensitivity of the MV TF activity assay (called Chapel Hill assay). MATERIAL AND METHODS: Improvements of the MV TF activity assay included i/ speed and time of centrifugation, ii/ use of a more potent inhibitory anti-TF antibody iii/ use of FVII and a fluorogenic substrate to increase specificity. RESULTS: The specificity of the MV TF activity assay was demonstrated by the absence of activity on MV derived from a knock-out-TF cell line using an anti-human TF monoclonal antibody called SBTF-1, which shows a higher TF inhibitory effect than the anti-human TF monoclonal antibody called HTF-1. Experiments using blood from healthy individuals, stimulated or not by LPS, or plasma spiked with 3 different levels of MV, demonstrated that the new assay was more sensitive and this allowed detection of MV TF activity in platelet free plasma (PFP) samples from healthy individuals. However, the assay was limited by an inter-assay variability, mainly due to the centrifugation step. CONCLUSIONS: We have improved the sensitivity of the MV TF activity assay without losing specificity. This new assay could be used to evaluate levels of TF-positive MV as a potential biomarker of thrombotic risk in patients.

J Extracell Vesicles ; 7(1): 1494482, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30034644


Among extracellular vesicles, leukocyte-derived microvesicles (LMVs) have emerged as complex vesicular structures. Primarily identified as procoagulant entities, they were more recently ascribed to plasmin generation capacity (MV-PGC). The objectives of this work were (1) to develop a new hybrid bio-assay combining the specific isolation of LMVs and measurement of their PGC, and compare its performance to the original method based on centrifugation, (2) to validate MV-PGC in septic shock, combining increased levels of LMVs and fibrinolytic imbalance. Using plasma sample spiked with LMVs featuring different levels of PGC, we demonstrated that CD15-beads specifically extracted LMVs. The MV dependency of the test was demonstrated using electron microscopy, high speed centrifugation, nanofiltration and detergent-mediated solubilization and the MV-PGC specificity using plasmin-specific inhibitors, or antibodies blocking elastase or uPA. Thanks to a reaction booster (ε-ACA), we showed that the assay was more sensitive and reproducible than the original method. Moreover, it exhibited a good repeatability, inter-operator and inter-experiment reproducibility. The new immunomagnetic bio-assay was further validated in patients with septic shock. As a result, we showed that MV-PGC values were significantly lower in septic shock patients who died compared to patients who survived, both at inclusion and 24 h later (1.4 [0.8-3.0] vs 3.1 [1.7-18] A405 × 10-3/min, p = 0.02; 1.4 [1-1.6] vs 5.2 [2.2-16] A405 × 10-3/min, p = 0.004). Interestingly, combining both MV-PGC and PAI-1 in a ratio significantly improved the predictive value of PAI-1. This strategy, a hybrid capture bioassay to specifically measure LMV-PGC using for the first time, opens new perspectives for measuring subcellular fibrinolytic potential in clinical settings with fibrinolytic imbalance.

Transfus Apher Sci ; 53(2): 110-26, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26603057


Submicron-sized extra-cellular vesicles generated by budding from the external cell membranes, microparticles (MPs) are important actors in transfusion as well as in other medical specialties. After briefly positioning their role in the characterization of labile blood products, this technically oriented chapter aims to review practical points that need to be considered when trying to use flow cytometry for the analysis, characterization and absolute counting of MP subsets. Subjects of active discussions relative to instrumentation will include the choice of the trigger parameter, possible standardization approaches requiring instrument quality-control, origin and control of non-specific background and of coincidence artifacts, choice of the type of electronic signals, optimal sheath fluid and sample speed. Questions related to reagents will cover target antigens and receptors, multi-color reagents, negative controls, enumeration of MPs and limiting artifacts due to unexpected (micro-) coagulation of plasma samples. Newly detected problems are generating innovative solutions and flow cytometry will continue to remain the technology of choice for the analysis of MPs, in the domain of transfusion as well as in many diverse specialties.

Micropartículas Derivadas de Células/metabolismo , Citometria de Fluxo/métodos , Animais , Humanos
Arterioscler Thromb Vasc Biol ; 32(4): 1054-8, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22328775


OBJECTIVE: Cellular microparticles (MP) are promising biomarkers in many pathological situations. Although flow cytometry (FCM) is widely used for their measurement, it has raised controversies because the smallest MP size falls below the detection limit of standard FCM (sd-FCM). Following recent technological improvements leading to high sensitivity FCM (hs-FCM), our objectives were (1) to evaluate the potential of hs-FCM for extended MP detection, (2) to set up a standardized protocol for MP enumeration, and (3) to compare MP counts obtained with both sensitivity levels. METHODS AND RESULTS: Compared with sd-FCM, hs-FCM displayed improved forward scatter resolution and lower background noise, allowing us to discriminate previously undetectable small MP in plasma samples. Using fluorescent beads with appropriate sizes (0.1/0.3/0.5/0.9 µm) and relative amounts, a new standardized hs-FCM MP protocol was set up and provided reproducible MP counts. Applied to coronary patient samples, it resulted into 8- to 20-fold increases in MP counts as compared with sd-FCM. Interestingly, the ratio between small and large MP varied according to clinical status but also depending on MP subset, suggesting access to new biological information. CONCLUSIONS: Recent improvements in FCM provide access to previously undetectable MP and represent a new opportunity to enhance their impact as biomarkers in clinical practice.

Micropartículas Derivadas de Células/patologia , Doença das Coronárias/patologia , Citometria de Fluxo , Biomarcadores/sangue , Calibragem , Micropartículas Derivadas de Células/química , Doença das Coronárias/sangue , Citometria de Fluxo/métodos , Citometria de Fluxo/normas , Humanos , Tamanho da Partícula , Valor Preditivo dos Testes , Reprodutibilidade dos Testes , Sensibilidade e Especificidade