Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Sci (Lond) ; 134(22): 3023-3046, 2020 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-33231619

RESUMO

The developmental origins of health and disease (DOHaD) is a concept linking pre- and early postnatal exposures to environmental influences with long-term health outcomes and susceptibility to disease. It has provided a new perspective on the etiology and evolution of chronic disease risk, and as such is a classic example of a paradigm shift. What first emerged as the 'fetal origins of disease', the evolution of the DOHaD conceptual framework is a storied one in which preclinical studies played an important role. With its potential clinical applications of DOHaD, there is increasing desire to leverage this growing body of preclinical work to improve health outcomes in populations all over the world. In this review, we provide a perspective on the values and limitations of preclinical research, and the challenges that impede its translation. The review focuses largely on the developmental programming of cardiovascular function and begins with a brief discussion on the emergence of the 'Barker hypothesis', and its subsequent evolution into the more-encompassing DOHaD framework. We then discuss some fundamental pathophysiological processes by which developmental programming may occur, and attempt to define these as 'instigator' and 'effector' mechanisms, according to their role in early adversity. We conclude with a brief discussion of some notable challenges that hinder the translation of this preclinical work.

2.
EClinicalMedicine ; 27: 100555, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33205030

RESUMO

Background: Iron deficiency (ID) is the leading single-nutrient deficiency in the world. Anaemia is a common outcome of ID that affects half of pregnancies worldwide with serious consequences for child development. Whether haematologic indices and biomarkers of iron status in pregnant women correlate with those of their neonates is unclear. This systematic review evaluated studies comparing haematologic and iron status indices in pregnant women and their newborns/neonates. Methods: We searched MEDLINE, EMBASE, CINAHL, and Web of Science from database inception until March 2020 for primary studies comparing haematologic and iron status indices between women and their newborns up to 48 h after birth. We summarized the results descriptively and calculated pooled correlation coefficients in mothers and newborns/neonates using the Schmidt-Hunter method. The protocol was registered at PROSPERO International Prospective Register of Systematic Reviews (Registration number: CRD42018093094). Findings: Sixty-five studies were included. Pooled correlation coefficients for biomarkers of iron status in mothers and newborns/neonates were 0.13 (ferritin), 0.42 (hepcidin), 0.30 (serum/plasma iron), 0.09 (transferrin), 0.20 (transferrin saturation), and 0.16 (total iron binding capacity). Pooled correlation coefficients for haematological indices in mothers and newborns/neonates were 0.15 (haemoglobin), 0.15 (haematocrit), 0.25 (mean cell/corpuscular haemoglobin), 0.22 (mean cell/corpuscular volume). Interpretation: Maternal biomarkers of iron and haematologic status correlate poorly with those in newborns/neonates. These results underscore a need for alternative approaches to estimate foetal/neonatal iron status and haematological indices. Funding: MBO and SLB hold Canada Research Chairs, and grants from the Women and Children's Health Research Institute and Canadian Institutes of Health Research.

3.
BMC Med ; 18(1): 135, 2020 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-32393275

RESUMO

BACKGROUND: Early-life malnutrition may have long-lasting effects on microbe-host interactions that affect health and disease susceptibility later in life. Diet quality and quantity in conjunction with toxin and pathogen exposure are key contributors to microbe-host physiology and malnutrition. Consequently, it is important to consider both diet- and microbe-induced pathologies as well as their interactions underlying malnutrition. MAIN BODY: Gastrointestinal immunity and digestive function are vital to maintain a symbiotic relationship between the host and microbiota. Childhood malnutrition can be impacted by numerous factors including gestational malnutrition, early life antibiotic use, psychological stress, food allergy, hygiene, and exposure to other chemicals and pollutants. These factors can contribute to reoccurring environmental enteropathy, a condition characterized by the expansion of commensal pathobionts and environmental pathogens. Reoccurring intestinal dysfunction, particularly during the critical window of development, may be a consequence of diet-microbe interactions and may lead to life-long immune and metabolic programming and increased disease risk. We provide an overview of the some key factors implicated in the progression of malnutrition (protein, fat, carbohydrate, iron, vitamin D, and vitamin B12) and discuss the microbiota during early life that may contribute health risk later in life. CONCLUSION: Identifying key microbe-host interactions, particularly those associated with diet and malnutrition requires well-controlled dietary studies. Furthering our understanding of diet-microbe-host interactions will help to provide better strategies during gestation and early life to promote health later in life.

4.
Sci Rep ; 10(1): 6926, 2020 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-32332768

RESUMO

Stressors during the fetal and postnatal period affect the growth and developmental trajectories of offspring, causing lasting effects on physiologic regulatory systems. Here, we tested whether reduced uterine artery blood flow in late pregnancy would alter body composition in the offspring, and whether feeding offspring a western diet (WD) would aggravate these programming effects. Pregnant rats underwent bilateral uterine artery ligation (BUAL) or sham surgery on gestational day (GD)18 (term = GD22). At weaning, offspring from each group received either a normal diet (ND) or a WD. BUAL surgery increased fetal loss and caused offspring growth restriction, albeit body weights were no longer different at weaning, suggesting postnatal catch-up growth. BUAL did not affect body weight gain, fat accumulation, or plasma lipid profile in adult male offspring. In contrast, while ND-fed females from BUAL group were smaller and leaner than their sham-littermates, WD consumption resulted in excess weight gain, fat accumulation, and visceral adiposity. Moreover, WD increased plasma triglycerides and cholesterol in the BUAL-treated female offspring without any effect on sham littermates. These results demonstrate that reduced uterine artery blood flow during late pregnancy in rodents can impact body composition in the offspring in a sex-dependent manner, and these effects may be exacerbated by postnatal chronic WD consumption.


Assuntos
Dieta Ocidental , Metabolismo dos Lipídeos , Artéria Uterina/patologia , Adipócitos/patologia , Animais , Animais Recém-Nascidos , Composição Corporal , Peso Corporal , Tamanho Celular , Feminino , Teste de Tolerância a Glucose , Ligadura , Lipídeos/sangue , Masculino , Obesidade Abdominal/sangue , Obesidade Abdominal/patologia , Tamanho do Órgão , Gravidez , Ratos Long-Evans
5.
Cardiovasc Res ; 116(1): 183-192, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30715197

RESUMO

AIMS: Perinatal iron deficiency (ID) alters developmental trajectories of offspring, predisposing them to cardiovascular dysfunction in later life. The mechanisms underlying this long-term programming of renal function have not been defined. We hypothesized perinatal ID causes hypertension and alters kidney metabolic function and morphology in a sex-dependent manner in adult offspring. Furthermore, we hypothesized these effects are exacerbated by chronic consumption of a high salt diet. METHODS AND RESULTS: Pregnant Sprague Dawley rats were fed either an iron-restricted or replete diet prior to and throughout pregnancy. Adult offspring were fed normal or high salt diets for 6 weeks prior to experimentation at 6 months of age. Blood pressure (BP) was assessed via indwelling catheters in anaesthetized offspring; kidney mitochondrial function was assessed via high-resolution respirometry; reactive oxygen species and nitric oxide were quantified via fluorescence microscopy. Adult males, but not females, exhibited increased systolic BP due to ID (P = 0.01) and high salt intake (P = 0.02). In males, but not in females, medullary mitochondrial content was increased by high salt (P = 0.003), while succinate-dependent respiration was reduced by ID (P < 0.05). The combination of perinatal ID and high salt reduced complex IV activity in the cortex of males (P = 0.01). Perinatal ID increased cytosolic superoxide generation (P < 0.001) concomitant with reduced nitric oxide bioavailability (P < 0.001) in male offspring, while high salt increased mitochondrial superoxide in the medulla (P = 0.04) and cytosolic superoxide within the cortex (P = 0.01). Male offspring exhibited glomerular basement membrane thickening (P < 0.05), increased collagen deposition (P < 0.05), and glomerular hypertrophy (interaction, P = 0.02) due to both perinatal ID and high salt. Female offspring exhibited no alterations in mitochondrial function or morphology due to either high salt or ID. CONCLUSION: Perinatal ID causes long-term sex-dependent alterations in renal metabolic function and morphology, potentially contributing to hypertension and increased cardiovascular disease risk.


Assuntos
Ferro na Dieta , Ferro/deficiência , Nefropatias/etiologia , Rim/metabolismo , Mitocôndrias/metabolismo , Estresse Oxidativo , Efeitos Tardios da Exposição Pré-Natal , Sódio na Dieta , Fatores Etários , Fenômenos Fisiológicos da Nutrição Animal , Animais , Pressão Sanguínea , Modelos Animais de Doenças , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Feminino , Rim/patologia , Rim/fisiopatologia , Nefropatias/metabolismo , Nefropatias/patologia , Nefropatias/fisiopatologia , Masculino , Fenômenos Fisiológicos da Nutrição Materna , Mitocôndrias/patologia , Óxido Nítrico/metabolismo , Estado Nutricional , Gravidez , Ratos Sprague-Dawley , Fatores Sexuais , Superóxidos/metabolismo , Fatores de Tempo
6.
Reproduction ; 160(4): R65-R78, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33434171

RESUMO

Iron is an essential mineral that participates in oxygen transport, DNA synthesis and repair, and as a cofactor for various cellular processes. Iron deficiency is the most common nutritional deficiency worldwide. Due to blood volume expansion and demands from the fetal-placental unit, pregnant women are one of the populations most at risk of developing iron deficiency. Iron deficiency during pregnancy poses major health concerns for offspring, including intrauterine growth restriction and long-term health complications. Although the underlying mechanisms remain unclear, maternal iron deficiency may indirectly impair fetal growth through changes in the structure and function of the placenta. Since the placenta forms the interface between mother and baby, understanding how the placenta changes in iron deficiency may yield new diagnostic indices of fetal stress in affected pregnancies, thereby leading to earlier interventions and improved fetal outcomes. In this review, we compile current data on the changes in placental development and function that occur under conditions of maternal iron deficiency, and discuss challenges and perspectives on managing the high incidence of iron deficiency in pregnant women.

7.
J Physiol ; 597(18): 4715-4728, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31368136

RESUMO

KEY POINTS: Perinatal iron deficiency causes changes in offspring mesenteric artery function in adulthood, particularly in males, which can be exacerbated by chronic intake of a high salt diet. Perinatal iron deficient male offspring exhibit enhanced conversion of big endothelin-1 to active endothelin-1, coinciding with decreased nitric oxide levels. Perinatal iron deficient male offspring have reduced nitric oxide-mediated endothelial-dependent vasodilatation coincident with increased vascular superoxide levels following consumption of a high salt diet. Perinatal iron deficiency has no apparent effects on vascular function in female offspring, even when fed a high salt diet. These results help us better understand underlying vascular mechanisms contributing to increased cardiovascular risk from perinatal stressors such as iron deficiency. ABSTRACT: Pre- and immediate postnatal stressors, such as iron deficiency, can alter developmental trajectories and predispose offspring to long-term cardiovascular dysfunction. Here, we investigated the impact of perinatal iron deficiency on vascular function in the adult offspring, and whether these long-term effects were exacerbated by prolonged consumption of a high salt diet in adulthood. Female Sprague Dawley rats were fed either an iron-restricted or -replete diet prior to and throughout pregnancy. Six weeks prior to experimentation at 6 months of age, adult offspring were fed either a normal or high salt diet. Mesenteric artery responses to vasodilators and vasoconstrictors were assessed ex vivo by wire myography. Male perinatal iron deficient offspring exhibited decreased reliance on nitric oxide with methacholine-induced vasodilatation (interaction P = 0.03), coincident with increased superoxide levels when fed the high salt diet (P = 0.01). Male perinatal iron deficient offspring exhibit enhanced big endothelin-1 conversion to active endothelin-1 (P = 0.02) concomitant with decreased nitric oxide levels (P = 0.005). Female offspring vascular function was unaffected by perinatal iron deficiency, albeit the high salt diet was associated with impaired vasodilation and decreased nitric oxide production (P = 0.02), particularly in the perinatal iron deficient offspring. These findings implicate vascular dysfunction in the sex-specific programming of cardiovascular dysfunction in the offspring by perinatal iron deficiency.


Assuntos
Anemia Ferropriva/fisiopatologia , Dieta/efeitos adversos , Endotélio Vascular/efeitos dos fármacos , Parto/efeitos dos fármacos , Cloreto de Sódio na Dieta/farmacologia , Doenças Vasculares/induzido quimicamente , Animais , Endotélio Vascular/metabolismo , Feminino , Masculino , Artérias Mesentéricas/efeitos dos fármacos , Artérias Mesentéricas/metabolismo , Óxido Nítrico/metabolismo , Gravidez , Ratos , Ratos Sprague-Dawley , Doenças Vasculares/metabolismo , Vasoconstritores/farmacologia , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia
8.
J Physiol ; 597(15): 3833-3852, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31165480

RESUMO

KEY POINTS: In vivo, uterine perivascular adipose tissue (PVAT) potentiates uterine artery blood flow in pregnant rats, although not in non-pregnant rats. In isolated preparations, uterine PVAT has pro-contractile and anti-dilatory effects on uterine arteries. Pregnancy induces changes in uterine arteries that makes them responsive to uterine PVAT signalling. ABSTRACT: An increase in uterine artery blood flow (UtBF) is a common and necessary feature of a healthy pregnancy. In the present study, we tested the hypothesis that adipose tissue surrounding uterine arteries (uterine perivascular adipose tissue; PVAT) is a novel local mediator of UtBF and uterine artery tone during pregnancy. In vivo experiments in anaesthetized Sprague-Dawley rats showed that pregnant animals (gestational day 16, term = 22--23 days) had a three-fold higher UtBF compared to non-pregnant animals. Surgical removal of uterine PVAT reduced UtBF only in pregnant rats. In a series of ex vivo bioassays, we demonstrated that uterine PVAT had pro-contractile and anti-dilatory effects on rat uterine arteries. In the presence of PVAT-conditioned media, isolated uterine arteries from both pregnant and non-pregnant rats had reduced vasodilatory responses. In non-pregnant rats, these responses were mediated at the level of uterine vascular smooth muscle, whereas, in pregnant rats, PVAT-media reduced endothelium-dependent relaxation. Pregnancy increased adipocyte size in ovarian adipose tissue but had no effect on uterine PVAT adipocyte morphology. In addition, pregnancy down-regulated the gene expression of metabolic adipokines in uterine but not in aortic PVAT. In conclusion, this is the first study to demonstrate that uterine PVAT plays a regulatory role in UtBF, at least in part, as a result of its actions on uterine artery tone. We propose that the interaction between the uterine vascular wall and its adjacent adipose tissue may provide new insights for interventions in pregnancies with adipose tissue dysfunction and abnormal UtBF.


Assuntos
Tecido Adiposo/fisiologia , Circulação Placentária , Gravidez/fisiologia , Artéria Uterina/fisiologia , Vasoconstrição , Vasodilatação , Animais , Feminino , Ratos , Ratos Sprague-Dawley
9.
PLoS One ; 14(5): e0215221, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31120888

RESUMO

Poor reporting quality may contribute to irreproducibility of results and failed 'bench-to-bedside' translation. Consequently, guidelines have been developed to improve the complete and transparent reporting of in vivo preclinical studies. To examine the impact of such guidelines on core methodological and analytical reporting items in the preclinical anesthesiology literature, we sampled a cohort of studies. Preclinical in vivo studies published in Anesthesiology, Anesthesia & Analgesia, Anaesthesia, and the British Journal of Anaesthesia (2008-2009, 2014-2016) were identified. Data was extracted independently and in duplicate. Reporting completeness was assessed using the National Institutes of Health Principles and Guidelines for Reporting Preclinical Research. Risk ratios were used for comparative analyses. Of 7615 screened articles, 604 met our inclusion criteria and included experiments reporting on 52 490 animals. The most common topic of investigation was pain and analgesia (30%), rodents were most frequently used (77%), and studies were most commonly conducted in the United States (36%). Use of preclinical reporting guidelines was listed in 10% of applicable articles. A minority of studies fully reported on replicates (0.3%), randomization (10%), blinding (12%), sample-size estimation (3%), and inclusion/exclusion criteria (5%). Statistics were well reported (81%). Comparative analysis demonstrated few differences in reporting rigor between journals, including those that endorsed reporting guidelines. Principal items of study design were infrequently reported, with few differences between journals. Methods to improve implementation and adherence to community-based reporting guidelines may be necessary to increase transparent and consistent reporting in the preclinical anesthesiology literature.


Assuntos
Avaliação Pré-Clínica de Medicamentos/normas , Relatório de Pesquisa/normas , Analgésicos/uso terapêutico , Animais , Bases de Dados Factuais , Guias como Assunto , Dor/tratamento farmacológico
11.
Anesth Analg ; 129(1): e20-e22, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-29200074

RESUMO

We tested whether propofol or Intralipid inoculated with Staphylococcus epidermidis would promote bacterial growth within an intravenous (IV) injection hub, a site prone to bacterial contamination. In tubes incubated under optimal conditions, S epidermidis exhibited growth in Intralipid, but not in propofol. In contrast, within the IV hub incubated with either propofol or intralipid at room temperature, S epidermidis bacterial numbers declined with time, and virtually no contamination remained after 12 hours. These data suggest that certain IV lines are inhospitable for S epidermidis.


Assuntos
Contaminação de Medicamentos , Contaminação de Equipamentos , Fosfolipídeos/análise , Propofol/análise , Óleo de Soja/análise , Staphylococcus epidermidis/crescimento & desenvolvimento , Dispositivos de Acesso Vascular/microbiologia , Emulsões/administração & dosagem , Emulsões/análise , Injeções Intravenosas , Viabilidade Microbiana , Fosfolipídeos/administração & dosagem , Propofol/administração & dosagem , Óleo de Soja/administração & dosagem , Fatores de Tempo
12.
Pharmacol Res ; 139: 261-272, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30458216

RESUMO

Cardiovascular diseases (CVD) are a leading cause of mortality worldwide. Despite recognizing the importance of risk factors in dictating CVD susceptibility and onset, patient treatment remains a challenging endeavor. Increasingly, the benefits of prevention and mitigation of risk factors earlier in life are being acknowledged. The developmental origins of health and disease posits that insults during specific periods of development can influence long-term health outcomes; this occurs because the developing organism is highly plastic, and hence vulnerable to environmental perturbations. By extension, targeted therapeutics instituted during critical periods of development may confer long-term protection, and thus reduce the risk of CVD in later life. This review provides a brief overview of models of developmental programming, and then discusses the impact of perinatal therapeutic interventions on long-term cardiovascular function in the offspring. The discussion focuses on bioactive food components, as well as pharmacological agents currently approved for use in pregnancy; in short, those agents most likely to be used in pregnancy and early childhood.


Assuntos
Doenças Cardiovasculares/prevenção & controle , Desenvolvimento Embrionário , Desenvolvimento Fetal , Animais , Fenômenos Fisiológicos Cardiovasculares , Feminino , Humanos , Gravidez
14.
PLoS One ; 13(8): e0202871, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30161186

RESUMO

BACKGROUND: Medication overdose is a prevalent issue and despite mixed reports of efficacy, the use of intravenous lipid emulsions, notably Intralipid®, for the management of toxicity from lipid-soluble drugs is becoming increasingly prevalent. Whether alternative lipid emulsion formulations have similar efficacy for resuscitation compared to Intralipid is not known. Here, we compared the efficacy of Intralipid and ClinOleic® for resuscitation following overdose with the lipid-soluble beta-adrenergic antagonist propranolol. METHODS: Male Sprague-Dawley rats (age 3-4 months) were anesthetized with isoflurane and instrumented for direct hemodynamic assessments. In Study One, rats (n = 22) were pre-treated with Intralipid 20% (n = 12) or ClinOleic 20% (n = 10) to determine whether the hemodynamic effects of propranolol could be prevented. In Study Two, rats were randomly assigned to Intralipid 20% (1, 2, or 3 mL/kg IV, n = 21) or ClinOleic 20% (1, 2, or 3 mL/kg IV, n = 20) resuscitation groups following propranolol overdose (15 mg/kg IV). In Study Three the effect of Intralipid 20% (1 mL/kg IV, n = 3) and ClinOleic 20% (1 mL/kg IV, n = 3) in the absence of propranolol was investigated. The primary endpoint in all studies was survival time (up to a maximum of 120 minutes), and secondary endpoints were time to achieve 50%, 75%, and 90% of baseline hemodynamic parameters. RESULTS: In Study One, pre-treatment with Intralipid prior to propranolol administration resulted in prolonged survival compared to pre-treatment with ClinOleic at low doses (1 mL/kg; P = 0.002), but provided no benefit at higher doses (3 mL/kg; P = 0.95). In Study Two, Intralipid conferred a survival advantage over ClinOleic, with 18/21 rats surviving 120 minutes in the Intralipid group and only 4/20 survivors in the ClinOleic group (P<0.0001). Median survival times (with interquartile ranges) for rats treated with Intralipid, and ClinOleic, and saline were 120 (80.5-120) min, 21.5 (3.25-74.5) min, and 1 (0.25-2.5) min respectively (P<0.001). Only 3/21 rats in the Intralipid group survived less than 30 minutes, whereas 12/20 ClinOleic treated rats had survival times of less than 30 minutes. The number of rats achieving 75%, and 90% of baseline mean arterial pressure was also greater in the Intralipid group (P<0.05 for both values). Treatment in Study Three did not alter survival times. CONCLUSIONS: Low-dose Intralipid (1, 2, or 3 mL/kg IV) confers a survival advantage up to 120 minutes post-propranolol overdose (the end-point of the experiment) and better hemodynamic recovery compared to ClinOleic (1, 2, or 3 mL/kg IV) in rats with propranolol overdose. As health care centres choose alternate intravenous lipid emulsions, limited availability of Intralipid could impact efficacy and success of overdose treatment for lipid-soluble drugs.


Assuntos
Overdose de Drogas/terapia , Emulsões Gordurosas Intravenosas/farmacologia , Fosfolipídeos/farmacologia , Óleos Vegetais/farmacologia , Propranolol/efeitos adversos , Óleo de Soja/farmacologia , Animais , Overdose de Drogas/fisiopatologia , Emulsões/farmacologia , Hemodinâmica , Estimativa de Kaplan-Meier , Masculino , Distribuição Aleatória , Ratos Sprague-Dawley
16.
Hypertension ; 72(1): 177-187, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29785960

RESUMO

Preeclampsia, fetal growth restriction, and miscarriage remain important causes of maternal and perinatal morbidity and mortality. These complications are associated with reduced numbers of a specialized T lymphocyte subset called regulatory T cells (Treg cells) in the maternal circulation, decidua, and placenta. Treg cells suppress inflammation and prevent maternal immunity toward the fetus, which expresses foreign paternal alloantigens. Treg cells are demonstrated to contribute to vascular homeostasis, but whether Treg cells influence the vascular adaptations essential for a healthy pregnancy is unknown. Thus, using a mouse model of Treg-cell depletion, we investigated the hypothesis that depletion of Treg cells would cause increased inflammation and aberrant uterine artery function. Here, we show that Treg-cell depletion resulted in increased embryo resorption and increased production of proinflammatory cytokines. Mean arterial pressure exhibited greater modulation by NO in Treg cell-deficient mice because the L-NG-nitroarginine methyl ester-induced increase in mean arterial pressure was 46% greater compared with Treg cell-replete mice. Uterine artery function, which is essential for the supply of nutrients to the placenta and fetus, demonstrated dysregulated hemodynamics after Treg-cell depletion. This was evidenced by increased uterine artery resistance and pulsatility indices and enhanced conversion of bET-1 (big endothelin-1) to the active and potent vasoconstrictor, ET-1 (endothelin-1). These data demonstrate an essential role for Treg cells in modulating uterine artery function during pregnancy and implicate Treg-cell control of maternal vascular function as a key mechanism underlying normal fetal and placental development.


Assuntos
Retardo do Crescimento Fetal/imunologia , Tolerância Imunológica/imunologia , Placenta/patologia , Prenhez , Linfócitos T Reguladores/patologia , Artéria Uterina/fisiopatologia , Vasodilatação/fisiologia , Animais , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Retardo do Crescimento Fetal/patologia , Citometria de Fluxo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Placenta/imunologia , Gravidez , Linfócitos T Reguladores/imunologia , Artéria Uterina/patologia
17.
FASEB J ; 32(6): 3254-3263, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29401611

RESUMO

Prenatal iron deficiency alters fetal developmental trajectories, which results in persistent changes in organ function. Here, we studied the effects of prenatal iron deficiency on fetal kidney and liver mitochondrial function. Pregnant Sprague-Dawley rats were fed partially or fully iron-restricted diets to induce a state of moderate or severe iron deficiency alongside iron-replete control rats. We assessed mitochondrial function via high-resolution respirometry and reactive oxygen species generation via fluorescence microscopy on gestational d 21. Hemoglobin levels were reduced in dams in the moderate (-31%) and severe groups (-54%) compared with controls, which was accompanied by 55% reductions in fetal hemoglobin levels in both moderate and severe groups versus controls. Male iron-deficient kidneys exhibited globally reduced mitochondrial content and respiration, as well as increased cytosolic superoxide and decreased NO. Female iron-deficient kidneys exhibited complex II down-regulation and increased mitochondrial oxidative stress. Male iron-deficient livers exhibited reduced complex IV respiration and increased cytosolic superoxide, whereas female liver tissues exhibited no alteration in oxidant levels or mitochondrial function. These findings indicate that prenatal iron deficiency causes changes in mitochondrial content and function as well as oxidant status in a sex- and organ-dependent manner, which may be an important mechanism that underlies the programming of cardiovascular disease.-Woodman, A. G., Mah, R., Keddie, D., Noble, R. M. N., Panahi, S., Gragasin, F. S., Lemieux, H., Bourque, S. L. Prenatal iron deficiency causes sex-dependent mitochondrial dysfunction and oxidative stress in fetal rat kidneys and liver.


Assuntos
Feto/metabolismo , Ferro/deficiência , Rim/embriologia , Fígado/embriologia , Mitocôndrias Hepáticas/metabolismo , Estresse Oxidativo , Complicações na Gravidez/metabolismo , Caracteres Sexuais , Animais , Feminino , Feto/patologia , Rim/patologia , Fígado/patologia , Masculino , Mitocôndrias Hepáticas/patologia , Gravidez , Complicações na Gravidez/patologia , Ratos , Ratos Sprague-Dawley
18.
Sci Rep ; 7: 46573, 2017 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-28440316

RESUMO

Prenatal iron-deficiency (ID) is known to alter fetal developmental trajectories, which predisposes the offspring to chronic disease in later life, although the underlying mechanisms remain unclear. Here, we sought to determine whether varying degrees of maternal anaemia could induce organ-specific patterns of hypoxia in the fetuses. Pregnant female Sprague Dawley rats were fed iron-restricted or iron-replete diets to induce a state of moderate (M-ID) or severe ID (S-ID) alongside respective controls. Ultrasound biomicroscopy was performed on gestational day (GD)20 to assess uterine and umbilical artery blood flow patterns. On GD21, tissues were collected and assessed for hypoxia using pimonidazole staining. Compared to controls, maternal haemoglobin (Hb) in M- and S-ID were reduced 17% (P < 0.01) and 48% (P < 0.001), corresponding to 39% (P < 0.001) and 65% (P < 0.001) decreases in fetal Hb. Prenatal ID caused asymmetric fetal growth restriction, which was most pronounced in S-ID. In both severities of ID, umbilical artery resistive index was increased (P < 0.01), while pulsatility index only increased in S-ID (P < 0.05). In both M-and S-ID, fetal kidneys and livers showed evidence of hypoxia (P < 0.01 vs. controls), whereas fetal brains and placentae remained normoxic. These findings indicate prenatal ID causes organ-specific fetal hypoxia, even in the absence of severe maternal anaemia.


Assuntos
Anemia Ferropriva , Encéfalo , Doenças Fetais/sangue , Ferro/deficiência , Placenta , Anemia Ferropriva/sangue , Anemia Ferropriva/embriologia , Anemia Ferropriva/patologia , Animais , Encéfalo/irrigação sanguínea , Encéfalo/embriologia , Encéfalo/patologia , Feminino , Placenta/irrigação sanguínea , Placenta/embriologia , Placenta/patologia , Gravidez , Ratos , Ratos Sprague-Dawley
19.
Hypertension ; 67(5): 1038-44, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26928803

RESUMO

This study was undertaken to determine whether perinatal maternal resveratrol (Resv)--a phytoalexin known to confer cardiovascular protection--could prevent the development of hypertension and improve vascular function in adult spontaneously hypertensive rat offspring. Dams were fed either a control or Resv-supplemented diet (4 g/kg diet) from gestational day 0.5 until postnatal day 21. Indwelling catheters were used to assess blood pressure and vascular function in vivo; wire myography was used to assess vascular reactivity ex vivo. Perinatal Resv supplementation in dams had no effect on fetal body weights, albeit continued maternal treatment postnatally resulted in growth restriction in offspring by postnatal day 21; growth restriction was no longer evident after 5 weeks of age. Maternal perinatal Resv supplementation prevented the onset of hypertension in adult offspring (-18 mm Hg; P=0.007), and nitric oxide synthase inhibition (with L-NG-nitroarginine methyl ester) normalized these blood pressure differences, suggesting improved nitric oxide bioavailability underlies the hemodynamic alterations in the Resv-treated offspring. In vivo and ex vivo, vascular responses to methylcholine were not different between treatment groups, but prior treatment with L-NG-nitroarginine methyl ester attenuated the vasodilation in untreated, but not Resv-treated adult offspring, suggesting a shift toward nitric oxide-independent vascular control mechanisms in the treated group. Finally, bioconversion of the inactive precursor big endothelin-1 to active endothelin-1 in isolated mesenteric arteries was reduced in Resv-treated offspring (-28%; P<0.05), and this difference could be normalized by L-NG-nitroarginine methyl ester treatment. In conclusion, perinatal maternal Resv supplementation mitigated the development of hypertension and causes persistent alterations in vascular responsiveness in spontaneously hypertensive rats.


Assuntos
Suplementos Nutricionais , Hipertensão/prevenção & controle , Prenhez , Estilbenos/farmacologia , Adulto , Crianças Adultas , Animais , Animais Recém-Nascidos , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Assistência Perinatal/métodos , Gravidez , Distribuição Aleatória , Ratos , Ratos Endogâmicos SHR , Valores de Referência , Resveratrol
20.
Hypertension ; 65(6): 1324-30, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25916720

RESUMO

Advanced maternal age is becoming increasingly common in Western societies and is associated with increased maternal and fetal morbidity and mortality. We hypothesized that aging results in impaired vascular function in pregnancy because of increased vascular oxidative stress and resultant scavenging of nitric oxide in both uterine and systemic arteries, causing reduced uteroplacental perfusion and poor pregnancy outcomes. Using aged rats (9.5 months), we investigated the effect of a delayed first natural pregnancy on pregnancy outcomes and uterine and mesenteric artery function on gestational day 20. Delayed pregnancy in the rat reduced fertility by 46%, reduced litter size by 36%, caused fetal growth restriction, increased placental weight, and increased maternal systolic blood pressure (by 16 mm Hg). Uterine arteries from aged dams displayed reduced constriction to phenylephrine (young: 14.3±0.94 mN/mm versus aged: 11.4±0.5 mN/mm, P=0.02) and potassium chloride (124 mmol/L; young: 21.8±1.27 mN/mm versus aged: 14.2±1.7 mN/mm; P=0.01). Methacholine-induced vasodilation was similar in uterine arteries from young and aged dams. However, mesenteric arteries from aged dams had a greater nitric oxide and a reduced endothelial-derived hyperpolarization contribution to methacholine-mediated vasodilation compared with young dams. Both uterine and mesenteric arteries from aged dams had greater active myogenic responses, with area under the curve increased by 228% and 151%, in aged uterine and mesenteric arteries, respectively. These results demonstrate that vascular function is altered at an advanced maternal age and provides further insights into the risks of poor pregnancy outcomes observed in women who delay pregnancy.


Assuntos
Retardo do Crescimento Fetal/fisiopatologia , Idade Materna , Circulação Placentária/fisiologia , Resultado da Gravidez , Prenhez , Artéria Uterina/fisiopatologia , Animais , Feminino , Retardo do Crescimento Fetal/tratamento farmacológico , Humanos , Artérias Mesentéricas/efeitos dos fármacos , Artérias Mesentéricas/fisiopatologia , NG-Nitroarginina Metil Éster/farmacologia , Circulação Placentária/efeitos dos fármacos , Gravidez , Ratos , Ratos Sprague-Dawley , Medição de Risco , Ultrassonografia Pré-Natal , Artéria Uterina/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...