Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Chem ; 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38374456

RESUMO

Open-shell nanographenes exhibit unconventional π-magnetism arising from topological frustration or strong electron-electron interaction. However, conventional design approaches are typically limited to a single magnetic origin, which can restrict the number of correlated spins or the type of magnetic ordering in open-shell nanographenes. Here we present a design strategy that combines topological frustration and electron-electron interactions to fabricate a large fully fused 'butterfly'-shaped tetraradical nanographene on Au(111). We employ bond-resolved scanning tunnelling microscopy and spin-excitation spectroscopy to resolve the molecular backbone and reveal the strongly correlated open-shell character, respectively. This nanographene contains four unpaired electrons with both ferromagnetic and anti-ferromagnetic interactions, harbouring a many-body singlet ground state and strong multi-spin entanglement, which is well described by many-body calculations. Furthermore, we study the magnetic properties and spin states in the nanographene using a nickelocene magnetic probe. The ability to imprint and characterize many-body strongly correlated spins in polyradical nanographenes paves the way for future advancements in quantum information technologies.

2.
Angew Chem Int Ed Engl ; 63(9): e202317091, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38192200

RESUMO

The character of the electronic structure of acenes has been the subject of longstanding discussion. However, convincing experimental evidence of their open-shell character has so far been missing. Here, we present the on-surface synthesis of tridecacene molecules by thermal annealing of octahydrotridecacene on a Au(111) surface. We characterized the electronic structure of the tridecacene by scanning probe microscopy, which reveals the presence of an inelastic signal at 126 meV. We attribute the inelastic signal to spin excitation from the singlet diradical ground state to the triplet excited state. To rationalize the experimental findings, we carried out many-body ab initio calculations as well as model Hamiltonians to take into account the effect of the metallic substrate. Moreover, we provide a detailed analysis of how the dynamic electron correlation and virtual charge fluctuation between the molecule and metallic surface reduces the singlet-triplet band gap. Thus, this work provides the first experimental confirmation of the magnetic character of tridecacene.

3.
J Chem Phys ; 159(22)2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38095205

RESUMO

In the past decade, the quantum chemical version of the density matrix renormalization group method has established itself as the method of choice for strongly correlated molecular systems. However, despite its favorable scaling, in practice, it is not suitable for computations of dynamic correlation. Several approaches to include that in post-DMRG methods exist; in our group, we focused on the tailored coupled cluster (TCC) approach. This method works well in many situations; however, in exactly degenerate cases (with two or more determinants of equal weight), it exhibits a bias toward the reference determinant representing the Fermi vacuum. Although sometimes it is possible to use a compensation scheme to avoid this bias for energy differences, it is certainly a drawback. In order to overcome this bias of the TCC method, we have developed a Hilbert-space multireference version of tailored CC, which can treat several determinants on an equal footing. We have implemented and compared the performance of three Hilbert-space multireference coupled cluster (MRCC) variants-the state universal one and the Brillouin-Wigner and Mukherjee's state specific ones. We have assessed these approaches on the cyclobutadiene and tetramethyleneethane molecules, which are both diradicals with exactly degenerate determinants at a certain geometry. We have also investigated the sensitivity of the results on the orbital rotation of the highest occupied and lowest unoccupied molecular orbital (HOMO-LUMO) pair, as it is well known that Hilbert-space MRCC methods are not invariant to such transformations.

4.
J Chem Theory Comput ; 19(21): 7606-7616, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37864544

RESUMO

The new generation of proposed light-emitting molecules for organic light-emitting diodes (OLEDs) has raised considerable research interest due to its exceptional feature─a negative singlet-triplet (ST) gap violating Hund's multiplicity rule in the excited S1 and T1 states. We investigate the role of spin polarization in the mechanism of ST gap inversion. Spin polarization is associated with doubly excited determinants of certain types, whose presence in the wave function expansion favors the energy of the singlet state more than that of the triplet. Using a perturbation theory-based model for spin polarization, we propose a simple descriptor for prescreening of candidate molecules with negative ST gaps and prove its usefulness for heptazine-type molecules. Numerical results show that the quantitative effect of spin polarization decreases linearly with the increasing highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) exchange integral. Comparison of single- and multireference coupled-cluster predictions of ST gaps shows that the former methods provide good accuracy by correctly balancing the effects of doubly excited determinants and dynamic correlation. We also show that accurate ST gaps may be obtained using a complete active space model supplemented with dynamic correlation from multireference adiabatic connection theory.

5.
J Chem Phys ; 159(2)2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37428065

RESUMO

Tensor algebra operations such as contractions in computational chemistry consume a significant fraction of the computing time on large-scale computing platforms. The widespread use of tensor contractions between large multi-dimensional tensors in describing electronic structure theory has motivated the development of multiple tensor algebra frameworks targeting heterogeneous computing platforms. In this paper, we present Tensor Algebra for Many-body Methods (TAMM), a framework for productive and performance-portable development of scalable computational chemistry methods. TAMM decouples the specification of the computation from the execution of these operations on available high-performance computing systems. With this design choice, the scientific application developers (domain scientists) can focus on the algorithmic requirements using the tensor algebra interface provided by TAMM, whereas high-performance computing developers can direct their attention to various optimizations on the underlying constructs, such as efficient data distribution, optimized scheduling algorithms, and efficient use of intra-node resources (e.g., graphics processing units). The modular structure of TAMM allows it to support different hardware architectures and incorporate new algorithmic advances. We describe the TAMM framework and our approach to the sustainable development of scalable ground- and excited-state electronic structure methods. We present case studies highlighting the ease of use, including the performance and productivity gains compared to other frameworks.

6.
J Am Chem Soc ; 144(28): 12725-12731, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35817408

RESUMO

The synthesis of novel polymeric materials with porphyrinoid compounds as key components of the repeating units attracts widespread interest from several scientific fields in view of their extraordinary variety of functional properties with potential applications in a wide range of highly significant technologies. The vast majority of such polymers present a closed-shell ground state, and, only recently, as the result of improved synthetic strategies, the engineering of open-shell porphyrinoid polymers with spin delocalization along the conjugation length has been achieved. Here, we present a combined strategy toward the fabrication of one-dimensional porphyrinoid-based polymers homocoupled via surface-catalyzed [3 + 3] cycloaromatization of isopropyl substituents on Au(111). Scanning tunneling microscopy and noncontact atomic force microscopy describe the thermal-activated intra- and intermolecular oxidative ring closure reactions as well as the controlled tip-induced hydrogen dissociation from the porphyrinoid units. In addition, scanning tunneling spectroscopy measurements, complemented by computational investigations, reveal the open-shell character, that is, the antiferromagnetic singlet ground state (S = 0) of the formed polymers, characterized by singlet-triplet inelastic excitations observed between spins of adjacent porphyrinoid units. Our approach sheds light on the crucial relevance of the π-conjugation in the correlations between spins, while expanding the on-surface synthesis toolbox and opening avenues toward the synthesis of innovative functional nanomaterials with prospects in carbon-based spintronics.

7.
J Chem Theory Comput ; 18(2): 687-702, 2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35034448

RESUMO

Iron-sulfur clusters comprise an important functional motif in the catalytic centers of biological systems, capable of enabling important chemical transformations at ambient conditions. This remarkable capability derives from a notoriously complex electronic structure that is characterized by a high density of states that is sensitive to geometric changes. The spectral sensitivity to subtle geometric changes has received little attention from correlated, large active space calculations, owing partly to the exceptional computational complexity for treating these large and correlated systems accurately. To provide insight into this aspect, we report the first Complete Active Space Self Consistent Field (CASSCF) calculations for different geometries of the [Fe(II/III)4S4(SMe)4]-2 clusters using two complementary, correlated solvers: spin-pure Adaptive Sampling Configuration Interaction (ASCI) and Density Matrix Renormalization Group (DMRG). We find that the previously established picture of a double-exchange driven magnetic structure, with minute energy gaps (<1 mHa) between consecutive spin states, has a weak dependence on the underlying geometry. However, the spin gap between the singlet and the spin state 2S + 1 = 19, corresponding to a maximal number of Fe-d electrons being unpaired and of parallel spin, is strongly geometry dependent, changing by a factor of 3 upon slight deformations that are still within biologically relevant parameters. The CASSCF orbital optimization procedure, using active spaces as large as 86 electrons in 52 orbitals, was found to reduce this gap compared to typical mean-field orbital approaches. Our results show the need for performing large active space calculations to unveil the challenging electronic structure of these complex catalytic centers and should serve as accurate starting points for fully correlated treatments upon inclusion of dynamical correlation outside the active space.

8.
J Chem Theory Comput ; 17(10): 6053-6072, 2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34570505

RESUMO

Active space quantum chemical methods could provide very accurate description of strongly correlated electronic systems, which is of tremendous value for natural sciences. The proper choice of the active space is crucial but a nontrivial task. In this article, we present a neural network-based approach for automatic selection of active spaces, focused on transition metal systems. The training set has been formed from artificial systems composed of one transition metal and various ligands, on which we have performed the density matrix renormalization group and calculated the single-site entropy. On the selected set of systems, ranging from small benchmark molecules up to larger challenging systems involving two metallic centers, we demonstrate that our machine learning models could predict the active space orbitals with reasonable accuracy. We also tested the transferability on out-of-the-model systems, including bimetallic complexes and complexes with ligands, which were not involved in the training set. Also, we tested the correctness of the automatically selected active spaces on a Fe(II)-porphyrin model, where we studied the lowest states at the DMRG level and compared the energy difference between spin states or the energy difference between conformations of ferrocene with recent studies.

9.
J Am Chem Soc ; 143(36): 14694-14702, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34379396

RESUMO

The synthesis of polycyclic aromatic hydrocarbons containing various non-benzenoid rings remains a big challenge facing contemporary organic chemistry despite a considerable effort made over the last decades. Herein, we present a novel route, employing on-surface chemistry, to synthesize nonalternant polycyclic aromatic hydrocarbons containing up to four distinct kinds of non-benzenoid rings. We show that the surface-induced mechanical constraints imposed on strained helical reactants play a decisive role leading to the formation of products, energetically unfavorable in solution, with a peculiar ring current stabilizing the aromatic character of the π-conjugated system. Determination of the chemical and electronic structures of the most frequent product reveals its closed-shell character and low band gap. The present study renders a new route for the synthesis of novel nonalternant polycyclic aromatic hydrocarbons or other hydrocarbons driven by internal stress imposed by the surface not available by traditional approaches of organic chemistry in solution.

10.
Nano Lett ; 21(1): 861-867, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33305570

RESUMO

The ability to engineer geometrically well-defined antidots in large triangulene homologues allows for creating an entire family of triangulene quantum rings (TQRs) with tunable high-spin ground state, crucial for next-generation molecular spintronic devices. Herein, we report the synthesis of an open-shell [7]triangulene quantum ring ([7]TQR) molecule on Au(111) through the surface-assisted cyclodehydrogenation of a rationally designed kekulene derivative. Bond-resolved scanning tunneling microscopy (BR-STM) unambiguously imaged the molecular backbone of a single [7]TQR with a triangular zigzag edge topology, which can be viewed as [7]triangulene decorated with a coronene-like antidot in the center. Additionally, dI/dV mapping reveals that both inner and outer zigzag edges contribute to the edge-localized and spin-polarized electronic states of [7]TQR. Both experimental results and spin-polarized density functional theory calculations indicate that [7]TQR retains its open-shell septuple ground state (S = 3) on Au(111). This work demonstrates a new route for the design of high-spin graphene quantum rings for future quantum devices.

11.
J Phys Chem Lett ; 12(1): 330-336, 2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33352044

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are a family of organic compounds comprising two or more fused aromatic rings which feature manifold applications in modern technology. Among these species, those presenting an open-shell magnetic ground state are of particular interest for organic electronic, spintronic, and non-linear optics and energy storage devices. Within PAHs, special attention has been devoted in recent years to the synthesis and study of the acene and fused acene (periacene) families, steered by their decreasing HOMO-LUMO gap with length and predicted open-shell character above some size. However, an experimental fingerprint of such magnetic ground state has remained elusive. Here, we report on the in-depth electronic characterization of isolated peripentacene molecules on a Au(111) surface. Scanning tunnelling spectroscopy, complemented by computational investigations, reveals an antiferromagnetic singlet ground state, characterized by singlet-triplet inelastic excitations with an experimental effective exchange coupling (Jeff) of 40.5 meV. Our results deepen the fundamental understanding of organic compounds with magnetic ground states, featuring perspectives in carbon-based spintronic devices.

12.
J Comput Chem ; 42(8): 534-544, 2021 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-33377527

RESUMO

We present, to the best of our knowledge, the first attempt to exploit the super-computer platform for quantum chemical density matrix renormalization group (QC-DMRG) calculations. We have developed the parallel scheme based on the in-house MPI global memory library, which combines operator and symmetry sector parallelisms, and tested its performance on three different molecules, all typical candidates for QC-DMRG calculations. In case of the largest calculation, which is the nitrogenase FeMo cofactor cluster with the active space comprising 113 electrons in 76 orbitals and bond dimension equal to 6000, our parallel approach scales up to approximately 2000 CPU cores.

13.
Front Chem ; 8: 590184, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33363108

RESUMO

We describe using the Newton Krylov method to solve the coupled cluster equation. The method uses a Krylov iterative method to compute the Newton correction to the approximate coupled cluster amplitude. The multiplication of the Jacobian with a vector, which is required in each step of a Krylov iterative method such as the Generalized Minimum Residual (GMRES) method, is carried out through a finite difference approximation, and requires an additional residual evaluation. The overall cost of the method is determined by the sum of the inner Krylov and outer Newton iterations. We discuss the termination criterion used for the inner iteration and show how to apply pre-conditioners to accelerate convergence. We will also examine the use of regularization technique to improve the stability of convergence and compare the method with the widely used direct inversion of iterative subspace (DIIS) methods through numerical examples.

14.
ACS Nano ; 14(12): 16735-16742, 2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-32687321

RESUMO

Functionalization of surfaces with derivatives of Buckminsterfullerene fragment molecules seems to be a promising approach toward bottom-up fabrication of carbon nanotube modified electrode surfaces. The modification of a Cu(100) surface with molecules of the buckybowl pentaindenocorannulene has been studied by means of scanning tunneling microscopy, carbon monoxide-modified noncontact atomic force microscopy, time-of-flight secondary mass spectrometry, and quantum chemical calculations. Two different adsorbate modes are identified, in which the majority is oriented such that the bowl cavity points away from the surface and the convex side is partially immersed into a four-atom vacancy in the Cu(100) surface. A minority is oriented such that the convex side points away from the surface with the five benzo tabs oriented basically parallel to the surface. Thermal annealing leads to hydrogenation and planarization of the molecules in two steps under specific C-C bond cleavage. The benzo tabs of the convex side up species serve as a hydrogen source. The final product has an open-shell electron structure that is quenched on the surface.

15.
J Chem Theory Comput ; 16(5): 3028-3040, 2020 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-32275424

RESUMO

We present a new implementation of density matrix renormalization group based tailored coupled clusters method (TCCSD), which employs the domain-based local pair natural orbital approach (DLPNO). Compared to the previous local pair natural orbital (LPNO) version of the method, the new implementation is more accurate, offers more favorable scaling, and provides more consistent behavior across the variety of systems. On top of the singles and doubles, we include the perturbative triples correction (T), which is able to retrieve even more dynamic correlation. The methods were tested on three systems: tetramethyleneethane, oxo-Mn(Salen), and iron(II)-porphyrin model. The first two were revisited to assess the performance with respect to LPNO-TCCSD. For oxo-Mn(Salen), we retrieved between 99.8 and 99.9% of the total canonical correlation energy which is an improvement of 0.2% over the LPNO version in less than 63% of the total LPNO runtime. Similar results were obtained for iron(II)-porphyrin. When the perturbative triples correction was employed, irrespective of the active space size or system, the obtained energy differences between two spin states were within the chemical accuracy of 1 kcal/mol using the default DLPNO settings.

16.
PLoS One ; 14(12): e0226487, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31856191

RESUMO

Bohemian gentian (Gentianella praecox subsp. bohemica) is an endemic taxon that occurs on the Czech Massif and together with the Sturmian gentian (Gentianella obtusifolia subsp. sturmiana) are the only autumnal species of Gentianella with large flowers in central Europe. Both species have declined dramatically in both population size and numbers of populations. The Bohemian gentian rescue programme, which recommended appropriate management measures, was adopted in 2011. Here we study the ecology of this species, results of the rescue programme and explore the possibilities of using the experience resulting from this programme for improving the viability of the second species. Long-term monitoring of populations of the Bohemian gentian has shown that regular mowing or grazing together with careful litter removal and gap creation are necessary for its survival in the current climatic conditions. We found some ecological differences between these two closely related species of Gentianella. However, our empirical experience of the largest population of the Sturmian gentian at a site where it thrives, and general evidence that gaps are crucial for the successful establishment of Gentianella seedlings, indicate that regular mowing or grazing together with careful litter removal and creation of gaps, should also be recommended as in the case of the Bohemian gentian rescue programme. Artificial gaps are especially crucial for successful seedling regeneration in oligotrophic meadows with dense vegetation, where the last Sturmian gentian populations survive.


Assuntos
Conservação dos Recursos Naturais/métodos , Fenômenos Ecológicos e Ambientais , Gentianella , Filogenia
17.
J Chem Phys ; 151(8): 084112, 2019 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-31470730

RESUMO

We introduce a new implementation of the coupled cluster method with single and double excitations tailored by the matrix product state wave functions (DMRG-TCCSD), which employs the local pair natural orbital (LPNO) approach. By exploiting locality in the coupled cluster stage of the calculation, we were able to remove some of the limitations that hindered the application of the canonical version of the method to larger systems and/or with larger basis sets. We assessed the accuracy of the approximation using two systems: tetramethyleneethane (TME) and oxo-Mn(Salen). Using the default cut-off parameters, we were able to recover over 99.7% and 99.8% of the canonical correlation energy for the triplet and singlet state of TME, respectively. In the case of oxo-Mn(Salen), we found that the amount of retrieved canonical correlation energy depends on the size of the complete active space (CAS)-we retrieved over 99.6% for the larger 27 orbital CAS and over 99.8% for the smaller 22 orbital CAS. The use of LPNO-TCCSD allowed us to perform these calculations up to quadruple-ζ basis set, amounting to 1178 basis functions. Moreover, we examined dependence of the ground state of oxo-Mn(Salen) on the CAS composition. We found that the inclusion of 4dxy orbital plays an important role in stabilizing the singlet state at the DMRG-CASSCF level via double-shell effect. However, by including dynamic correlation, the ground state was found to be triplet regardless of the size of the basis set or the composition of CAS, which is in agreement with previous findings by canonical DMRG-TCCSD in smaller basis.

18.
Phys Chem Chem Phys ; 21(9): 5022-5038, 2019 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-30762044

RESUMO

In this article we report an implementation of the perturbative triples correction to Mukherjee's state-specific multireference coupled cluster method based on the domain-based pair natural orbital approach (DLPNO-MkCC). We tested the performance of DLPNO-MkCCSD(T) in calculations involving tetramethyleneethane and isomers of naphthynes. These tests show that more than 97% of triples energy was recovered with respect to the canonical MkCCSD(T) method, which together with the DLPNO-MkCCSD part accounts for about 99.70-99.85% of the total correlation energy. The applicability of the method was demonstrated on calculations of singlet-triplet gaps for several large systems: triangulene, dynemicin A, and a beryllium complex.

19.
J Chem Theory Comput ; 15(4): 2206-2220, 2019 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-30802406

RESUMO

In this article, we investigate the numerical and theoretical aspects of the coupled-cluster method tailored by matrix-product states. We investigate formal properties of the used method, such as energy size consistency and the equivalence of linked and unlinked formulation. The existing mathematical analysis is here elaborated in a quantum chemical framework. In particular, we highlight the use of what we have defined as a complete active space-external space gap describing the basis splitting between the complete active space and the external part generalizing the concept of a HOMO-LUMO gap. Furthermore, the behavior of the energy error for an optimal basis splitting, i.e., an active space choice minimizing the density matrix renormalization group-tailored coupled-cluster singles doubles error, is discussed. We show numerical investigations on the robustness with respect to the bond dimensions of the single orbital entropy and the mutual information, which are quantities that are used to choose a complete active space. Moreover, the dependence of the ground-state energy error on the complete active space has been analyzed numerically in order to find an optimal split between the complete active space and external space by minimizing the density matrix renormalization group-tailored coupled-cluster error.

20.
Oecologia ; 187(3): 863-872, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29700631

RESUMO

Assessing genetic diversity within populations of rare species and understanding its determinants are crucial for effective species protection. While a lot is known about the relationships between genetic diversity, fitness, and current population size, very few studies explored the effects of past population size. Knowledge of past population size may, however, improve our ability to predict future population fates. We studied Gentianella praecox subsp. bohemica, a biennial species with extensive seed bank. We tested the effect of current, past minimal and maximal population size, and harmonic mean of population sizes within the last 15 years on genetic diversity and fitness. Maximum population size over the last 15 years was the best predictor of expected heterozygosity of the populations and was significantly related to current population size and management. Plant fitness was significantly related to current as well as maximum population size and expected heterozygosity. The results suggested that information on past population size may improve our understanding of contemporary genetic diversity across populations. They demonstrated that despite the strong fluctuations in population size, large reductions in population size do not result in immediate loss of genetic diversity and reduction of fitness within the populations. This is likely due to the seed bank of the species serving as reservoir of the genetic diversity of the populations. From a conservation point of view, this suggests that the restoration of small populations of short-lived species with permanent seed bank is possible as these populations may still be genetically diverse.


Assuntos
Espécies em Perigo de Extinção , Genética Populacional , Animais , Variação Genética , Densidade Demográfica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...