Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
2.
Transl Psychiatry ; 9(1): 154, 2019 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-31127079

RESUMO

Mild-cognitive impairment (MCI) occurs in up to one-fifth of individuals over the age of 65, with approximately a third of MCI individuals converting to dementia in later life. There is a growing necessity for early identification for those at risk of dementia as pathological processes begin decades before onset of symptoms. A cohort of 122 individuals diagnosed with MCI and followed up for a 36-month period for conversion to late-onset Alzheimer's disease (LOAD) were genotyped on the NeuroChip array along with pathologically confirmed cases of LOAD and cognitively normal controls. Polygenic risk scores (PRS) for each individual were generated using PRSice-2, derived from summary statistics produced from the International Genomics of Alzheimer's Disease Project (IGAP) genome-wide association study. Predictability models for LOAD were developed incorporating the PRS with APOE SNPs (rs7412 and rs429358), age and gender. This model was subsequently applied to the MCI cohort to determine whether it could be used to predict conversion from MCI to LOAD. The PRS model for LOAD using area under the precision-recall curve (AUPRC) calculated a predictability for LOAD of 82.5%. When applied to the MCI cohort predictability for conversion from MCI to LOAD was 61.0%. Increases in average PRS scores across diagnosis group were observed with one-way ANOVA suggesting significant differences in PRS between the groups (p < 0.0001). This analysis suggests that the PRS model for LOAD can be used to identify individuals with MCI at risk of conversion to LOAD.

3.
Br J Anaesth ; 123(2): e249-e253, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30929760

RESUMO

The study of rare families with inherited pain insensitivity can identify new human-validated analgesic drug targets. Here, a 66-yr-old female presented with nil requirement for postoperative analgesia after a normally painful orthopaedic hand surgery (trapeziectomy). Further investigations revealed a lifelong history of painless injuries, such as frequent cuts and burns, which were observed to heal quickly. We report the causative mutations for this new pain insensitivity disorder: the co-inheritance of (i) a microdeletion in dorsal root ganglia and brain-expressed pseudogene, FAAH-OUT, which we cloned from the fatty-acid amide hydrolase (FAAH) chromosomal region; and (ii) a common functional single-nucleotide polymorphism in FAAH conferring reduced expression and activity. Circulating concentrations of anandamide and related fatty-acid amides (palmitoylethanolamide and oleoylethanolamine) that are all normally degraded by FAAH were significantly elevated in peripheral blood compared with normal control carriers of the hypomorphic single-nucleotide polymorphism. The genetic findings and elevated circulating fatty-acid amides are consistent with a phenotype resulting from enhanced endocannabinoid signalling and a loss of function of FAAH. Our results highlight previously unknown complexity at the FAAH genomic locus involving the expression of FAAH-OUT, a novel pseudogene and long non-coding RNA. These data suggest new routes to develop FAAH-based analgesia by targeting of FAAH-OUT, which could significantly improve the treatment of postoperative pain and potentially chronic pain and anxiety disorders.


Assuntos
Amidoidrolases/genética , Ácidos Araquidônicos/sangue , Endocanabinoides/sangue , Insensibilidade Congênita à Dor/sangue , Insensibilidade Congênita à Dor/genética , Alcamidas Poli-Insaturadas/sangue , Pseudogenes/genética , Idoso , Amidoidrolases/sangue , Feminino , Humanos , Polimorfismo de Nucleotídeo Único/genética
4.
Lancet Neurol ; 17(12): 1032-1033, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30507384
5.
J Alzheimers Dis ; 2018 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-30475763

RESUMO

Progranulin (GRN) gene mutations are a major cause of frontotemporal dementia (FTD). Most mutations identified to date are null mutations, which are predicted to cause the pathology via haploinsufficiency. Decreased peripheral progranulin protein (PGRN) levels are associated with the presence of GRN null mutations and are accepted as reliable biomarkers. In this study, our aim was to test whether the presence of specific GRN splice site mutations (c.- 8+2T>G and c.708+6_9del), could be predicted by peripheral mRNA or protein GRN levels, by studying affected and asymptomatic individuals from FTD families. We also tested four missense GRN variants to assess if altered GRN levels depended on the type of mutation.Our results confirmed a reduction in both mRNA and protein PGRN levels in the splice site mutation carriers, which is consistent with previous reports for null mutations. Our results also suggested that both decreased peripheral GRN mRNA and serum PGRN levels indicate the presence of pathogenic mutations in affected individuals, and identify the asymptomatic individuals at risk, without previous knowledge of genetic status. Both inferences suggest a potential use of peripheral GRN mRNA or serum PGRN levels as biomarkers for families with FTD.

8.
Curr Neurol Neurosci Rep ; 18(10): 67, 2018 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-30097731

RESUMO

PURPOSE OF REVIEW: Dementia with Lewy bodies (DLB) is a neurodegenerative disease that can be clinically and pathologically similar to Parkinson's disease (PD) and Alzheimer's disease (AD). Current understanding of DLB genetics is insufficient and has been limited by sample size and difficulty in diagnosis. The first genome-wide association study (GWAS) in DLB was performed in 2017; a time at which the post-GWAS era has been reached in many diseases. RECENT FINDINGS: DLB shares risk loci with AD, in the APOE E4 allele, and with PD, in variation at GBA and SNCA. Interestingly, the GWAS suggested that DLB may also have genetic risk factors that are distinct from those in AD and PD. Although off to a slow start, recent studies have reinvigorated the field of DLB genetics and these results enable us to start to have a more complete understanding of the genetic architecture of this disease.

9.
JAMA Neurol ; 75(11): 1416-1422, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30039155

RESUMO

Importance: Pathogenic variants in LRRK2 are a relatively common genetic cause of Parkinson disease (PD). Currently, the molecular mechanism underlying disease is unknown, and gain and loss of function (LOF) models of pathogenesis have been postulated. LRRK2 variants are reported to result in enhanced phosphorylation of substrates and increased cell death. However, the double knockout of Lrrk2 and its homologue Lrrk1 results in neurodegeneration in a mouse model, suggesting that disease may occur by LOF. Because LRRK2 inhibitors are currently in development as potential disease-modifying treatments in PD, it is critical to determine whether LOF variants in LRRK2 increase or decrease the risk of PD. Objective: To determine whether LRRK1 and LRRK2 LOF variants contribute to the risk of developing PD. Design, Setting, and Participants: To determine the prevailing mechanism of LRRK2-mediated disease in human populations, next-generation sequencing data from a large case-control cohort (>23 000 individuals) was analyzed for LOF variants in LRRK1 and LRRK2. Data were generated at 5 different sites and 5 different data sets, including cases with clinically diagnosed PD and neurologically normal control individuals. Data were collected from 2012 through 2017. Main Outcomes and Measures: Frequencies of LRRK1 and LRRK2 LOF variants present in the general population and compared between cases and controls. Results: Among 11 095 cases with PD and 12 615 controls, LRRK1 LOF variants were identified in 0.205% of cases and 0.139% of controls (odds ratio, 1.48; SE, 0.571; 95% CI, 0.45-4.44; P = .49) and LRRK2 LOF variants were found in 0.117% of cases and 0.087% of controls (odds ratio, 1.48; SE, 0.431; 95% CI, 0.63-3.50; P = .36). All association tests suggested lack of association between LRRK1 or LRRK2 variants and PD. Further analysis of lymphoblastoid cell lines from several heterozygous LOF variant carriers found that, as expected, LRRK2 protein levels are reduced by approximately half compared with wild-type alleles. Conclusions and Relevance: Together these findings indicate that haploinsufficiency of LRRK1 or LRRK2 is neither a cause of nor protective against PD. Furthermore, these results suggest that kinase inhibition or allele-specific targeting of mutant LRRK2 remain viable therapeutic strategies in PD.

10.
Lancet Neurol ; 17(8): 721-730, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30033062

RESUMO

Alzheimer's disease is a genetically complex disorder; rare variants in the triggering receptor expressed on myeloid cells 2 (TREM2) gene have been shown to as much as triple an individual's risk of developing Alzheimer's disease. TREM2 is a transmembrane receptor expressed in cells of the myeloid lineage, and its association with Alzheimer's disease supports the involvement of immune and inflammatory pathways in the cause of the disease, rather than as a consequence of the disease. TREM2 variants associated with Alzheimer's disease induce partial loss of function of the TREM2 protein and alter the behaviour of microglial cells, including their response to amyloid plaques. TREM2 variants have also been shown to cause polycystic lipomembranous osteodysplasia with sclerosing leukoencephalopathy and frontotemporal dementia. Although the low frequency of TREM2 variants makes it difficult to establish robust genotype-phenotype correlations, such studies are essential to enable a comprehensive understanding of the role of TREM2 in different neurological diseases, with the ultimate goal of developing novel therapeutic approaches.

11.
Mol Psychiatry ; 2018 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-29988083

RESUMO

Common variants of about 20 genes contributing to AD risk have so far been identified through genome-wide association studies (GWAS). However, there is still a large proportion of heritability that might be explained by rare but functionally important variants. One of the so far identified genes with rare AD causing variants is ADAM10. Using whole-genome sequencing we now identified a single rare nonsynonymous variant (SNV) rs142946965 [p.R215I] in ADAM17 co-segregating with an autosomal-dominant pattern of late-onset AD in one family. Subsequent genotyping and analysis of available whole-exome sequencing data of additional case/control samples from Germany, UK, and USA identified five variant carriers among AD patients only. The mutation inhibits pro-protein cleavage and the formation of the active enzyme, thus leading to loss-of-function of ADAM17 alpha-secretase. Further, we identified a strong negative correlation between ADAM17 and APP gene expression in human brain and present in vitro evidence that ADAM17 negatively controls the expression of APP. As a consequence, p.R215I mutation of ADAM17 leads to elevated Aß formation in vitro. Together our data supports a causative association of the identified ADAM17 variant in the pathogenesis of AD.

12.
J Alzheimers Dis ; 64(2): 355-362, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29914034

RESUMO

The Brains for Dementia Research project is a recently established longitudinal cohort which aims to provide brain tissue for research purposes from neuropathologically defined samples. Here we present the findings from our analysis on the 19 established GWAS index SNPs for Alzheimer's disease, in order to demonstrate if the BDR sample also displays association to these variants. A highly significant association of the APOEɛ4 allele was identified (p = 3.99×10-12). Association tests for the 19 GWAS SNPs found that although no SNPs survive multiple testing, nominal significant findings were detected and concordance with the Lambert et al. GWAS meta-analysis was observed.

13.
Science ; 360(6395)2018 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-29930110

RESUMO

Disorders of the brain can exhibit considerable epidemiological comorbidity and often share symptoms, provoking debate about their etiologic overlap. We quantified the genetic sharing of 25 brain disorders from genome-wide association studies of 265,218 patients and 784,643 control participants and assessed their relationship to 17 phenotypes from 1,191,588 individuals. Psychiatric disorders share common variant risk, whereas neurological disorders appear more distinct from one another and from the psychiatric disorders. We also identified significant sharing between disorders and a number of brain phenotypes, including cognitive measures. Further, we conducted simulations to explore how statistical power, diagnostic misclassification, and phenotypic heterogeneity affect genetic correlations. These results highlight the importance of common genetic variation as a risk factor for brain disorders and the value of heritability-based methods in understanding their etiology.


Assuntos
Encefalopatias/genética , Transtornos Mentais/genética , Encefalopatias/classificação , Encefalopatias/diagnóstico , Variação Genética , Estudo de Associação Genômica Ampla , Humanos , Transtornos Mentais/classificação , Transtornos Mentais/diagnóstico , Fenótipo , Característica Quantitativa Herdável , Fatores de Risco
14.
Neurobiol Aging ; 66: 179.e17-179.e29, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29544907

RESUMO

Mendelian adult-onset leukodystrophies are a spectrum of rare inherited progressive neurodegenerative disorders affecting the white matter of the central nervous system. Among these, cerebral autosomal dominant and recessive arteriopathy with subcortical infarcts and leukoencephalopathy, cerebroretinal vasculopathy, metachromatic leukodystrophy, hereditary diffuse leukoencephalopathy with spheroids, and vanishing white matter disease present with rapidly progressive dementia as dominant feature and are caused by mutations in NOTCH3, HTRA1, TREX1, ARSA, CSF1R, EIF2B1, EIF2B2, EIF2B3, EIF2B4, and EIF2B5, respectively. Given the rare incidence of these disorders and the lack of unequivocally diagnostic features, leukodystrophies are frequently misdiagnosed with common sporadic dementing diseases such as Alzheimer's disease (AD), raising the question of whether these overlapping phenotypes may be explained by shared genetic risk factors. To investigate this intriguing hypothesis, we have combined gene expression analysis (1) in 6 different AD mouse strains (APPPS1, HOTASTPM, HETASTPM, TPM, TAS10, and TAU) at 5 different developmental stages (embryo [E15], 2, 4, 8, and 18 months), (2) in APPPS1 primary cortical neurons under stress conditions (oxygen-glucose deprivation) and single-variant-based and single-gene-based (c-alpha test and sequence kernel association test (SKAT)) genetic screening in a cohort composed of 332 Caucasian late-onset AD patients and 676 Caucasian elderly controls. Csf1r was significantly overexpressed (log2FC > 1, adj. p-value < 0.05) in the cortex and hippocampus of aged HOTASTPM mice with extensive Aß dense-core plaque pathology. We identified 3 likely pathogenic mutations in CSF1R TK domain (p.L868R, p.Q691H, and p.H703Y) in our discovery and validation cohort, composed of 465 AD and mild cognitive impairment (MCI) Caucasian patients from the United Kingdom. Moreover, NOTCH3 was a significant hit in the c-alpha test (adj p-value = 0.01). Adult-onset Mendelian leukodystrophy genes are not common factors implicated in AD. Nevertheless, our study suggests a potential pathogenic link between NOTCH3, CSF1R, and sporadic late-onset AD, which warrants further investigation.


Assuntos
Doença de Alzheimer/genética , Estudos de Associação Genética , Leucodistrofia Metacromática/genética , Mutação , Receptor Notch3/genética , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/genética , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/genética , Envelhecimento/metabolismo , Animais , Córtex Cerebral/metabolismo , Estudos de Coortes , Grupo com Ancestrais do Continente Europeu , Feminino , Hipocampo/metabolismo , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Fatores de Risco
15.
Front Aging Neurosci ; 10: 7, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29441010

RESUMO

Many of the molecular and pathological features associated with human Alzheimer disease (AD) are mirrored in the naturally occurring age-associated neuropathology in the canine species. In aged dogs with declining learned behavior and memory the severity of cognitive dysfunction parallels the progressive build up and location of Aß in the brain. The main aim of this work was to study the biological behavior of soluble oligomers isolated from an aged dog with cognitive dysfunction through investigating their interaction with a human cell line and synthetic Aß peptides. We report that soluble oligomers were specifically detected in the dog's blood and cerebrospinal fluid (CSF) via anti-oligomer- and anti-Aß specific binders. Importantly, our results reveal the potent neurotoxic effects of the dog's CSF on cell viability and the seeding efficiency of the CSF-borne soluble oligomers on the thermodynamic activity and the aggregation kinetics of synthetic human Aß. The value of further characterizing the naturally occurring Alzheimer-like neuropathology in dogs using genetic and molecular tools is discussed.

17.
Eur J Hum Genet ; 26(6): 827-837, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29476165

RESUMO

Alzheimer's disease (AD) and frontotemporal dementia (FTD) are the two most common neurodegenerative dementias. Variants in APP, PSEN1 and PSEN2 are typically linked to early-onset AD, and several genetic risk loci are associated with late-onset AD. Inherited FTD can be caused by hexanucleotide expansions in C9orf72, or variants in GRN, MAPT or CHMP2B. Several other genes have also been linked to FTD or FTD with motor neuron disease. Here we describe a cohort of 60 Finnish families with possible inherited dementia. Our aim was to clarify the genetic background of dementia in this cohort by analysing both known dementia-associated genes (APOE, APP, C9ORF72, GRN, PSEN1 and PSEN2) and searching for rare or novel segregating variants with exome sequencing. C9orf72 repeat expansions were detected in 12 (20%) of the 60 families, including, in addition to FTD, a family with neuropathologically verified AD. Twelve families (10 with AD and 2 with FTD) with representative samples from affected and unaffected subjects and without C9orf72 expansions were selected for whole-exome sequencing. Exome sequencing did not reveal any variants that could be regarded unequivocally causative, but revealed potentially damaging variants in UNC13C and MARCH4.

19.
Neurobiol Aging ; 62: 244.e1-244.e8, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29103623

RESUMO

Sporadic early-onset Alzheimer's disease (sEOAD) exhibits the symptoms of late-onset Alzheimer's disease but lacks the familial aspect of the early-onset familial form. The genetics of Alzheimer's disease (AD) identifies APOEε4 to be the greatest risk factor; however, it is a complex disease involving both environmental risk factors and multiple genetic loci. Polygenic risk scores (PRSs) accumulate the total risk of a phenotype in an individual based on variants present in their genome. We determined whether sEOAD cases had a higher PRS compared to controls. A cohort of sEOAD cases was genotyped on the NeuroX array, and PRSs were generated using PRSice. The target data set consisted of 408 sEOAD cases and 436 controls. The base data set was collated by the International Genomics of Alzheimer's Project consortium, with association data from 17,008 late-onset Alzheimer's disease cases and 37,154 controls, which can be used for identifying sEOAD cases due to having shared phenotype. PRSs were generated using all common single nucleotide polymorphisms between the base and target data set, PRS were also generated using only single nucleotide polymorphisms within a 500 kb region surrounding the APOE gene. Sex and number of APOE ε2 or ε4 alleles were used as variables for logistic regression and combined with PRS. The results show that PRS is higher on average in sEOAD cases than controls, although there is still overlap among the whole cohort. Predictive ability of identifying cases and controls using PRSice was calculated with 72.9% accuracy, greater than the APOE locus alone (65.2%). Predictive ability was further improved with logistic regression, identifying cases and controls with 75.5% accuracy.


Assuntos
Doença de Alzheimer/diagnóstico , Doença de Alzheimer/genética , Apolipoproteínas E/genética , Estudo de Associação Genômica Ampla , Herança Multifatorial , Idoso , Alelos , Estudos de Coortes , Feminino , Interação Gene-Ambiente , Genoma Humano/genética , Técnicas de Genotipagem/métodos , Humanos , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Fenótipo , Polimorfismo de Nucleotídeo Único , Risco
20.
Brain ; 141(2): 365-376, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29253101

RESUMO

Chronic pain is a major global public health issue causing a severe impact on both the quality of life for sufferers and the wider economy. Despite the significant clinical burden, little progress has been made in terms of therapeutic development. A unique approach to identifying new human-validated analgesic drug targets is to study rare families with inherited pain insensitivity. Here we have analysed an otherwise normal family where six affected individuals display a pain insensitive phenotype that is characterized by hyposensitivity to noxious heat and painless bone fractures. This autosomal dominant disorder is found in three generations and is not associated with a peripheral neuropathy. A novel point mutation in ZFHX2, encoding a putative transcription factor expressed in small diameter sensory neurons, was identified by whole exome sequencing that segregates with the pain insensitivity. The mutation is predicted to change an evolutionarily highly conserved arginine residue 1913 to a lysine within a homeodomain. Bacterial artificial chromosome (BAC) transgenic mice bearing the orthologous murine p.R1907K mutation, as well as Zfhx2 null mutant mice, have significant deficits in pain sensitivity. Gene expression analyses in dorsal root ganglia from mutant and wild-type mice show altered expression of genes implicated in peripheral pain mechanisms. The ZFHX2 variant and downstream regulated genes associated with a human pain-insensitive phenotype are therefore potential novel targets for the development of new analgesic drugs.awx326media15680039660001.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA