Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Mais filtros

Base de dados
Intervalo de ano de publicação
Opt Express ; 25(19): 23035-23044, 2017 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-29041607


We demonstrate low-loss GaN/AlGaN planar waveguides grown by molecular beam epitaxy on sapphire substrates. By using a proper AlGaN cladding layer and reducing surface roughness we reach <1dB/cm propagation losses at 633nm. These low propagation losses allow an efficient second harmonic generation using modal phase matching between a TM0 pump at 1260nm and a TM2 second harmonic at 630nm. A maximal power conversion of 2% is realized with an efficiency of 0.15%·W-1cm-2. We provide a modelling that demonstrates broadband features of GaN/AlGaN platform by showing second harmonic wavelengths tunability from the visible up to the near-infrared spectral region. We discuss drawbacks of modal phase matching and propose a novel solution which allows a drastic improvement of modal overlaps with the help of a planar polarity inversion. This new approach is compatible with low propagation losses and may allow as high as 100%·W-1cm-2 conversion efficiencies in the future.

Bioresour Technol ; 211: 146-53, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27015021


A process has been validated for the deconstruction of lignocellulose on a pilot scale installation using six types of biomass selected for their sustainability, accessibility, worldwide availability, and differences of chemical composition and physical structure. The process combines thermo-mechano-chemical and bio-catalytic action in a single twin-screw extruder. Three treatment phases were sequentially performed: an alkaline pretreatment, a neutralization step coupled with an extraction-separation phase and a bioextrusion treatment. Alkaline pretreatment destructured the wall polymers after just a few minutes and allowed the initial extraction of 18-54% of the hemicelluloses and 9-41% of the lignin. The bioextrusion step induced the start of enzymatic hydrolysis and increased the proportion of soluble organic matter. Extension of saccharification for 24h at high consistency (20%) and without the addition of new enzyme resulted in the production of 39-84% of the potential glucose.

Biocatálise , Lignina/química , Antiácidos/química , Antiácidos/farmacologia , Fracionamento Químico/métodos , Força Compressiva , Glucose/biossíntese , Hidrólise , Lignina/metabolismo , Fenômenos Mecânicos , Projetos Piloto , Polissacarídeos/química , Polissacarídeos/metabolismo , Temperatura
Nanotechnology ; 25(30): 305703, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-25008561


We report on the influence of a capping layer on the photoluminescence properties of self-assembled GaN quantum dots grown on an Al(0.5)Ga(0.5)N template. Self-assembled GaN quantum dots show a large quantum confined Stark shift and long carrier recombination time due to strong built-in spontaneous and piezoelectric polarization fields. Nevertheless, owing to strong carrier localization and suppressed nonradiative processes, these quantum dots have a high-quantum efficiency even at room temperature. Here, we show that the capping thickness has an important role on the optical properties of the GaN quantum dots. The radiative and nonradiative recombination processes of quantum dots are strongly affected by adjusting the capping thickness, and the GaN quantum dots with 12 monolayers-thick Al(0.5)Ga(0.5)N capping layer show a remarkably high internal quantum efficiency of more than 80% at room temperature. We also studied photoluminescence quenching and enhancement for surface (uncapped) quantum dots caused by photoadsorption and photodesorption of oxygen.