Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 49(24): 11439-48, 2010 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-21086984

RESUMO

Stopped-flow kinetic studies of the oxidation of Fe(III)-TAML catalysts, [ F e{1,2-X(2)C(6)H(2)-4,5-( NCOCMe(2) NCO)(2)CMe(2)}(OH(2))](-) (1), by t-BuOOH and H(2)O(2) in water affording Fe(IV) species has helped to clarify the mechanism of the interaction of 1 with primary oxidants. The data collected for substituted Fe(III)-TAMLs at pH 6.0-13.8 and 17-45 °C has confirmed that the reaction is first order both in 1 and in peroxides. Bell-shaped pH profiles of the effective second-order rate constants k(I) have maximum values in the pH range of 10.5-12.5 depending on the nature of 1 and the selected peroxide. The "acidic" part is governed by the deprotonation of the diaqua form of 1 and therefore electron-withdrawing groups move the lower pH limit of the reactivity toward neutral pH, although the rate constants k(I) do not change much. The dissection of k(I) into individual intrinsic rate constants k(1) ([FeL(OH(2))(2)](-) + ROOH), k(2) ([FeL(OH(2))OH)](2-) + ROOH), k(3) ([FeL(OH(2))(2)](-) + ROO(-)), and k(4) ([FeL(OH(2))OH)](2-) + ROO(-)) provides a model for understanding the bell-shaped pH-profiles. Analysis of the pressure and substituent effects on the reaction kinetics suggest that the k(2) pathway is (i) more probable than the kinetically indistinguishable k(3) pathway, and (ii) presumably mechanistically similar to the induced cleavage of the peroxide O-O bond postulated for cytochrome P450 enzymes. The redox titration of 1 by Ir(IV) and electrochemical data suggest that under basic conditions the reduction potential for the half-reaction [Fe(IV)L(=O)(OH(2))](2-) + e(-) + H(2)O → [Fe(III)L(OH)(OH(2))](2-) + OH(-) is close to 0.87 V (vs NHE).


Assuntos
Compostos Férricos/química , Peróxido de Hidrogênio/química , Compostos de Ferro/química , Compostos Macrocíclicos/química , Metaloporfirinas/química , Catálise , Cinética , Potenciometria , Espectrofotometria Ultravioleta , Termodinâmica
2.
Inorg Chem ; 48(16): 7667-78, 2009 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-19601585

RESUMO

A detailed study of the effect of pH, temperature, and pressure on the reaction of hydrogen peroxide with [Fe(III)(P(8-))](7-), where P(8-) represents the octa anionic porphyrin, was performed using stopped-flow techniques. Depending on the pH, different high valent iron-oxo species were formed. At pH < 9 formation of a two-electron oxidized species [(porphyrin(+*))Fe(IV)=O] was observed. In contrast, at pH > 9 only the one electron oxidized species [(porphyrin)Fe(IV)=O] was found to be present in solution. Under selected conditions at pH 8 it was possible to determine rate constants for both the coordination of hydrogen peroxide and subsequent heterolytic cleavage of the O-O bond. At pH 11 a composite rate constant for coordination of H(2)O(2) and homolytic cleavage of the O-O bond could be measured. In addition, it was possible to determine the activation parameters for the overall reaction sequence leading to the formation of [(porphyrin)Fe(IV)=O]. Careful analysis of the obtained data supports an associatively activated mechanism for the coordination of hydrogen peroxide. The catalytic properties of [Fe(III)(P(8-))](7-) in the presence of H(2)O(2) were also investigated. Both high valent iron-oxo species turned out to be able to oxidize diammonium-2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonate) (ABTS) to the radical cation ABTS(+*). At higher hydrogen peroxide concentrations a reduced yield of ABTS(+*) was observed because of increased catalase activity of [Fe(III)(P(8-))](7-). At high pH disproportionation of ABTS(+*) to ABTS and ABTS(2+) occurred, which could be suppressed by an excess of unreacted ABTS. In slightly basic to acidic solutions this reaction did not play a role.


Assuntos
Benzotiazóis/química , Compostos Férricos/química , Peróxido de Hidrogênio/química , Metaloporfirinas/química , Ácidos Sulfônicos/química , Catálise , Concentração de Íons de Hidrogênio , Hidróxidos/química , Cinética , Oxirredução , Pressão , Temperatura , Água/química
3.
Inorg Chem ; 48(16): 7864-84, 2009 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-19618946

RESUMO

The crystal structure of the as-yet-unknown salt K[Fe(III)(cydta)(H(2)O)].3H(2)O, where cydta = (+/-)-trans-1,2-cyclohexanediaminetetraacetate, has been resolved: orthorhombic space group Pbca with R1 = 0.0309, wR2 = 0.0700, and GOF = 0.99. There are two independent [Fe(III)(cydta)(H(2)O)](-) anions in the asymmetric unit, and the ligand is (R,R)-cydta in both cases. The coordination polyhedron is a seven-coordinate capped trigonal prism where the quadrilateral face formed by the four ligand donor oxygen atoms is capped by the coordinated water molecule. The speciation of [Fe(III)(cydta)(H(2)O)](-) in water was studied in detail by a combination of techniques: (i) Measurements of the pH dependence of the Fe(III/II)cydta redox potentials by cyclic voltammetry enabled the estimation of the stability constants (0.1 M KNO(3), 25 degrees C) of [Fe(III)(cydta)(H(2)O)](-) (log beta(III)(110) = 29.05 +/- 0.01) and [Fe(II)(cydta)(H(2)O)](2-) (log beta(II)(110) = 17.96 +/- 0.01) as well as pK(III)(a1OH) = 9.57 and pK(II)(a1H) = 2.69. The formation enthalpy of [Fe(III)(cydta)(H(2)O)](-) (DeltaH degrees = -23 +/- 1 kJ mol(-1)) was measured by direct calorimetry and is compared to the corresponding value for [Fe(III)(edta)(H(2)O)](-) (DeltaH degrees = -31 +/- 1 kJ mol(-1)). (ii) pH-dependent spectrophotometric titrations of Fe(III)cydta lead to pK(III)(a1OH) = 9.54 +/- 0.01 for deprotonation of the coordinated water and a dimerization constant of log K(d) = 1.07. These data are compared with those of Fe(III)pdta (pdta = 1,2-propanediaminetetraacetate; pK(III)(a1OH) = 7.70 +/- 0.01, log K(d) = 2.28) and Fe(III)edta (pK(III)(a1OH) = 7.52 +/- 0.01, log K(d) = 2.64). Temperature- and pressure-dependent (17)O NMR measurements lead to the following kinetic parameters for the water-exchange reaction at [Fe(III)(cydta)(H(2)O)](-) (at 298 K): k(ex) = (1.7 +/- 0.2) x 10(7) s(-1), DeltaH(++) = 40.2 +/- 1.3 kJ mol(-1), DeltaS(++) = +28.4 +/- 4.7 J mol(-1) K(-1), and DeltaV(++) = +2.3 +/- 0.1 cm(3) mol(-1). A detailed kinetic study of the effect of the buffer, temperature, and pressure on the reaction of hydrogen peroxide with [Fe(III)(cydta)(H(2)O)](-) was performed using stopped-flow techniques. The reaction was found to consist of two steps and resulted in the formation of a purple Fe(III) side-on-bound peroxo complex [Fe(III)(cydta)(eta(2)-O(2))](3-). The peroxo complex and its degradation products were characterized using Mossbauer spectroscopy. Formation of the purple peroxo complex is only observable above a pH of 9.5. Both reaction steps are affected by specific and general acid catalysis. Two different buffer systems were used to clarify the role of general acid catalysis in these reactions. Mechanistic descriptions and a comparison between the edta and cydta systems are presented. The first reaction step reveals an element of reversibility, which is evident over the whole studied pH range. The positive volume of activation for the forward reaction and the positive entropy of activation for the backward reaction suggest a dissociative interchange mechanism for the reversible end-on binding of hydrogen peroxide to [Fe(III)(cydta)(H(2)O)](-). Deprotonation of the end-on-bound hydroperoxo complex leads to the formation of a seven-coordinate side-on-bound peroxo complex [Fe(III)(cydta)(eta(2)-O(2))](3-), where one carboxylate arm is detached. [Fe(III)(cydta)(eta(2)-O(2))](3-) can be reached by two different pathways, of which one is catalyzed by a base and the other by deprotonated hydrogen peroxide. For both pathways, a small negative volume and entropy of activation was observed, suggesting an associative interchange mechanism for the ring-closure step to the side-on-bound peroxo complex. For the second reaction step, no element of reversibility was found.


Assuntos
Ácido Edético/análogos & derivados , Compostos Férricos/química , Peróxido de Hidrogênio/química , Termodinâmica , Dimerização , Ácido Edético/química , Concentração de Íons de Hidrogênio , Cinética , Oxirredução , Software , Espectrofotometria , Espectroscopia de Mossbauer , Temperatura , Titulometria , Água/química
4.
Inorg Chem ; 43(17): 5351-9, 2004 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-15310213

RESUMO

A detailed study of the effect of buffer, temperature, and pressure on the reaction of hydrogen peroxide with [Fe(III)(edta)H(2)O](-) was performed using stopped-flow techniques. The reaction was found to consist of two steps and resulted in the formation of the already characterized high-spin Fe(III) side-on bound peroxo complex. The second step of the reaction was found to be independent of the hydrogen peroxide concentration. Formation of the purple peroxo complex is only observable above pH 7.5. Both reaction steps are affected by specific and general acid-catalysis. Five different buffer systems were used to clarify the role of general acid-catalysis in these reactions. Both reaction steps reveal an element of reversibility, which disappears on decreasing the acid concentration. The positive volumes of activation for both the forward and reverse reactions of the first step suggest a dissociative interchange substitution process for the reversible end-on binding of hydrogen peroxide to [Fe(III)(edta)H(2)O](-). The small negative volume of activation for the second reaction step suggests an associative interchange mechanism for the formation of the side-on bound peroxo complex that is accompanied by dissociation of one of the four carboxylates of edta. A detailed mechanism in agreement with all the reported kinetic data is presented.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA