Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(19)2021 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-34639031

RESUMO

The family of phytochrome photoreceptors contains proteins with different domain architectures and spectral properties. Knotless phytochromes are one of the three main subgroups classified by their distinct lack of the PAS domain in their photosensory core module, which is in contrast to the canonical PAS-GAF-PHY array. Despite intensive research on the ultrafast photodynamics of phytochromes, little is known about the primary kinetics in knotless phytochromes. Here, we present the ultrafast Pr ⇆ Pfr photodynamics of SynCph2, the best-known knotless phytochrome. Our results show that the excited state lifetime of Pr* (~200 ps) is similar to bacteriophytochromes, but much longer than in most canonical phytochromes. We assign the slow Pr* kinetics to relaxation processes of the chromophore-binding pocket that controls the bilin chromophore's isomerization step. The Pfr photoconversion dynamics starts with a faster excited state relaxation than in canonical phytochromes, but, despite the differences in the respective domain architectures, proceeds via similar ground state intermediate steps up to Meta-F. Based on our observations, we propose that the kinetic features and overall dynamics of the ultrafast photoreaction are determined to a great extent by the geometrical context (i.e., available space and flexibility) within the binding pocket, while the general reaction steps following the photoexcitation are most likely conserved among the red/far-red phytochromes.

2.
J Phys Chem Lett ; 12(32): 7777-7782, 2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34374547

RESUMO

Enzyme catalysis achieves tremendous rate accelerations. Enzyme reaction centers provide a constraint geometry that preferentially binds an activated form of the substrate and thus lowers the energy barrier. However, this transition state picture neglects the flexibility of proteins and its role in enzymatic catalysis. Especially for proton transfer reactions, it has been suggested that motions of the protein modulate the donor-acceptor distance and prepare a tunneling-ready state. We report the detection of frequency fluctuations of an azide anion (N3-) bound in the active site of the protein carbonic anhydrase II, where a low-frequency mode of the protein has been proposed to facilitate proton transfer over two water molecules during the catalyzed reaction. 2D-IR spectroscopy resolves an underdamped low-frequency mode at about 1 THz (30 cm-1). We find its frequency to be viscosity- and temperature-dependent and to decrease by 6 cm-1 between 230 and 320 K, reporting the softening of the mode's potential.


Assuntos
Anidrase Carbônica II/química , Animais , Azidas/química , Domínio Catalítico , Bovinos , Prótons , Espectrofotometria Infravermelho/métodos , Temperatura , Vibração , Viscosidade , Água/química
3.
Nat Commun ; 12(1): 3284, 2021 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-34078890

RESUMO

Vibrational energy transfer (VET) is essential for protein function. It is responsible for efficient energy dissipation in reaction sites, and has been linked to pathways of allosteric communication. While it is understood that VET occurs via backbone as well as via non-covalent contacts, little is known about the competition of these two transport channels, which determines the VET pathways. To tackle this problem, we equipped the ß-hairpin fold of a tryptophan zipper with pairs of non-canonical amino acids, one serving as a VET injector and one as a VET sensor in a femtosecond pump probe experiment. Accompanying extensive non-equilibrium molecular dynamics simulations combined with a master equation analysis unravel the VET pathways. Our joint experimental/computational endeavor reveals the efficiency of backbone vs. contact transport, showing that even if cutting short backbone stretches of only 3 to 4 amino acids in a protein, hydrogen bonds are the dominant VET pathway.


Assuntos
Alanina/análogos & derivados , Proteínas/química , Triptofano/química , Regulação Alostérica , Azulenos/química , Transferência de Energia , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Teoria Quântica , Soluções , Termodinâmica , Vibração
4.
J Chem Phys ; 154(12): 124201, 2021 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-33810651

RESUMO

Amide I difference spectroscopy is widely used to investigate protein function and structure changes. In this article, we show that the common approach of assigning features in amide I difference signals to distinct secondary structure elements in many cases may not be justified. Evidence comes from Fourier transform infrared (FTIR) and 2D-IR spectroelectrochemistry of the protein cytochrome c in the amide I range, in combination with computational spectroscopy based on molecular dynamics (MD) simulations. This combination reveals that each secondary structure unit, such as an alpha-helix or a beta-sheet, exhibits broad overlapping contributions, usually spanning a large part of the amide I region, which in the case of difference absorption experiments (such as in FTIR spectroelectrochemistry) may lead to intensity-compensating and even sign-changing contributions. We use cytochrome c as the test case, as this small electron-transferring redox-active protein contains different kinds of secondary structure units. Upon switching its redox-state, the protein exhibits a different charge distribution while largely retaining its structural scaffold. Our theoretical analysis suggests that the change in charge distribution contributes to the spectral changes and that structural changes are small. However, in order to confidently interpret FTIR amide I difference signals in cytochrome c and proteins in general, MD simulations in combination with additional experimental approaches such as isotope labeling, the insertion of infrared labels to selectively probe local structural elements will be required. In case these data are not available, a critical assessment of previous interpretations of protein amide I 1D- and 2D-IR difference spectroscopy data is warranted.


Assuntos
Citocromos c/química , Animais , Cavalos , Simulação de Dinâmica Molecular , Oxirredução , Espectroscopia de Infravermelho com Transformada de Fourier
5.
Phys Chem Chem Phys ; 22(40): 22963-22972, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-33029608

RESUMO

Incorporation of minimally perturbative vibrational probes into proteins allows combination of the femtosecond time resolution of two dimensional infrared (2D-IR) spectroscopy with a spatial resolution on the level of single side chains. Here, we apply the thiocyanate (-SCN) label introduced by the cyanylation of cysteine to probe local dynamics in the photo-switchable protein PYP. We incorporated the -SCN label into five positions of the protein structure including PYP's core region, its solvent exposed surface and the chromophore-binding pocket. The analysis of -SCN's time dependent 2D-IR lineshape provides insight into the timescales and amplitudes of the dynamics in the label's protein and solvent microenvironment. We present a detailed analysis of the local protein dynamics found at all five labelling positions in PYP's dark state (pG). Absorption of a blue photon triggers the isomerisation of PYP's chromophore and eventually leads to an overall reorganisation of the protein structure, where PYP ends up in a less structured signalling state pB. Employing 2D-IR spectroscopy also on the signalling state allows assessment of the change of local dynamics compared to the pG state.

6.
Chem Rev ; 120(15): 7152-7218, 2020 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-32598850

RESUMO

Vibrational spectroscopy is an essential tool in chemical analyses, biological assays, and studies of functional materials. Over the past decade, various coherent nonlinear vibrational spectroscopic techniques have been developed and enabled researchers to study time-correlations of the fluctuating frequencies that are directly related to solute-solvent dynamics, dynamical changes in molecular conformations and local electrostatic environments, chemical and biochemical reactions, protein structural dynamics and functions, characteristic processes of functional materials, and so on. In order to gain incisive and quantitative information on the local electrostatic environment, molecular conformation, protein structure and interprotein contacts, ligand binding kinetics, and electric and optical properties of functional materials, a variety of vibrational probes have been developed and site-specifically incorporated into molecular, biological, and material systems for time-resolved vibrational spectroscopic investigation. However, still, an all-encompassing theory that describes the vibrational solvatochromism, electrochromism, and dynamic fluctuation of vibrational frequencies has not been completely established mainly due to the intrinsic complexity of intermolecular interactions in condensed phases. In particular, the amount of data obtained from the linear and nonlinear vibrational spectroscopic experiments has been rapidly increasing, but the lack of a quantitative method to interpret these measurements has been one major obstacle in broadening the applications of these methods. Among various theoretical models, one of the most successful approaches is a semiempirical model generally referred to as the vibrational spectroscopic map that is based on a rigorous theory of intermolecular interactions. Recently, genetic algorithm, neural network, and machine learning approaches have been applied to the development of vibrational solvatochromism theory. In this review, we provide comprehensive descriptions of the theoretical foundation and various examples showing its extraordinary successes in the interpretations of experimental observations. In addition, a brief introduction to a newly created repository Web site (http://frequencymap.org) for vibrational spectroscopic maps is presented. We anticipate that a combination of the vibrational frequency map approach and state-of-the-art multidimensional vibrational spectroscopy will be one of the most fruitful ways to study the structure and dynamics of chemical, biological, and functional molecular systems in the future.


Assuntos
Modelos Químicos , Proteínas/química , Análise Espectral/métodos , Humanos , Análise Espectral Raman , Eletricidade Estática , Vibração
7.
Phys Chem Chem Phys ; 22(10): 5463-5475, 2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-32096510

RESUMO

The calcium sensor protein calmodulin is ubiquitous among eukaryotes. It translates intracellular Ca2+ influx (by a decrease of conformational flexibility) into increased target recognition affinity. Here we demonstrate that by using the IR reporter -SCN in combination with 2D-IR spectroscopy, global structure changes and local dynamics, degree of solvent exposure and protein-ligand interaction can be characterised in great detail. The long vibrational lifetime of the -SCN label allows for centerline slope analysis of the 2D-IR line shape up to 120 ps to deduce the frequency-frequency correlation function (FFCF) of the -SCN label in various states and label positions in the protein. Based on that we show clear differences between a solvent exposed site, the environment close to the Ca2+ binding motif and three highly conserved positions for ligand binding. Furthermore, we demonstrate how these dynamics are affected by conformational change induced by the addition of Ca2+ ions and by interaction with a short helical peptide mimicking protein binding. We show that the binding mode is strongly heterogeneous among the probed key binding methionine residues. SCN's vibrational relaxation is dominated by intermolecular contributions. Changes in the vibrational lifetime upon changing between H2O and D2O buffer therefore provide a robust measure for water accessibility of the label. Characterising -SCN's extinction coefficient, vibrational lifetime in light and heavy water and its FFCF we demonstrate the vast potential it has as a label especially for nonlinear spectroscopies, such as 2D-IR spectroscopy.


Assuntos
Calmodulina/química , Espectrofotometria Infravermelho , Calmodulina/metabolismo , Óxido de Deutério/química , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Solventes/química , Vibração , Água/química
8.
Anal Chem ; 92(1): 1024-1032, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31769286

RESUMO

The application of vibrational labels such as thiocyanate  (-S-C≡N) for studying protein structure and dynamics is thriving. Absorption spectroscopy is usually employed to obtain wavenumber and line shape of the label. An observable of great significance might be the vibrational lifetime, which can be obtained by pump probe or 2D-IR spectroscopy. Due to the insulating effect of the heavy sulfur atom in the case of the SCN label, the lifetime of the C≡N oscillator is expected to be particularly sensitive to its surrounding as it is not dominated by through-bond relaxation. We therefore investigate the vibrational lifetime of the SCN label at various positions in the blue light sensor protein Photoactive Yellow Protein (PYP) in the ground state and signaling state of the photoreceptor. We find that the vibrational lifetime of the C≡N stretching mode is strongly affected both by its protein environment and by the degree of exposure to the solvent. Even for label positions where the line shape and wavenumber observed by FTIR are barely changing upon activation of the photoreceptor, we find that the lifetime can change considerably. To obtain an unambiguous measure for the solvent exposure of the labeled site, we show that it is imperative to compare the lifetimes in H2O and D2O. Importantly, the lifetimes shorten in H2O as compared to D2O for water exposed labels, while they stay largely the same for buried labels. We quantify this effect by defining a solvent exclusion coefficient (SEC). The response of the label's vibrational lifetime to its solvent exposure renders it a suitable universal probe for protein investigations. This applies even to systems that are otherwise hard to address, such as transient or short-lived states, which could be created during a protein's working cycle (as here in PYP) or during protein folding. It is also applicable to flexible systems (intrinsically disordered proteins), protein-protein and protein-membrane interactions.


Assuntos
Proteínas de Bactérias/química , Óxido de Deutério/química , Fotorreceptores Microbianos/química , Tiocianatos/química , Proteínas de Bactérias/efeitos da radiação , Halorhodospira halophila/química , Luz , Simulação de Dinâmica Molecular , Fotorreceptores Microbianos/efeitos da radiação , Conformação Proteica , Espectrofotometria Infravermelho , Tiocianatos/efeitos da radiação , Vibração
9.
Phys Chem Chem Phys ; 21(12): 6622-6634, 2019 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-30855039

RESUMO

Photoactive Yellow Protein (PYP) is a bacterial blue light receptor that enters a photocycle after excitation. The intermediate states are formed on time scales ranging from femtoseconds up to hundreds of milliseconds, after which the signaling state with a lifetime of about 1 s is reached. To investigate structural changes and dynamics, we incorporated the SCN IR label at distinct positions of the photoreceptor via cysteine mutation and cyanylation. FT-IR measurements of the SCN label at different sites of the well-established dark state structure of PYP characterized the spectral response of the label to differences in the environment. Under constant blue light irradiation, we observed the formation of the signaling state with significant changes of wavenumber and lineshape of the SCN bands. Thereby we deduced light-induced structural changes in the local environment of the labels. These results were supported by molecular dynamics simulations on PYP providing the solvent accessible surface area (SASA) at the different positions. To follow protein dynamics via the SCN label during the photocycle, we performed step-scan FT-IR measurements with a time resolution of 10 µs. Global analysis yielded similar time constants of τ1 = 70 µs, τ2 = 640 µs, and τ3 > 20 ms for the wild type and τ1 = 36 µs, τ2 = 530 µs, and τ3 > 20 ms for the SCN-labeled mutant PYP-A44C*, a mutant which provided a sufficiently large SCN difference signal to measure step-scan FT-IR spectra. In comparison to the protein (amide, E46) and chromophore bands the dynamics of the SCN label show a different behavior. This result indicates that the local kinetics sensed by the label are different from the global protein kinetics.


Assuntos
Proteínas de Bactérias/química , Luz , Simulação de Dinâmica Molecular , Fotorreceptores Microbianos/química , Tiocianatos/química , Conformação Proteica , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície
10.
Angew Chem Int Ed Engl ; 58(9): 2899-2903, 2019 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-30589180

RESUMO

Allosteric information transfer in proteins has been linked to distinct vibrational energy transfer (VET) pathways in a number of theoretical studies. Experimental evidence for such pathways, however, is sparse because site-selective injection of vibrational energy into a protein, that is, localized heating, is required for their investigation. Here, we solved this problem by the site-specific incorporation of the non-canonical amino acid ß-(1-azulenyl)-l-alanine (AzAla) through genetic code expansion. As an exception to Kasha's rule, AzAla undergoes ultrafast internal conversion and heating after S1 excitation while upon S2 excitation, it serves as a fluorescent label. We equipped PDZ3, a protein interaction domain of postsynaptic density protein 95, with this ultrafast heater at two distinct positions. We indeed observed VET from the incorporation sites in the protein to a bound peptide ligand on the picosecond timescale by ultrafast IR spectroscopy. This approach based on genetically encoded AzAla paves the way for detailed studies of VET and its role in a wide range of proteins.


Assuntos
Alanina/química , Transferência de Energia , Alanina/genética , Modelos Moleculares , Vibração
11.
J Am Chem Soc ; 140(3): 926-931, 2018 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-29182322

RESUMO

It is a photochemist's dream to be able to photoinduce a reaction of a specific molecular species in an ensemble of similar but not identical ones. The problem is that similar molecules often exhibit nearly identical UV-Vis absorption spectra, making them difficult or impossible to distinguish or to select spectroscopically. The ultrafast VIPER (VIbrationally Promoted Electronic Resonance) pulse sequence allows to pick a single species for electronic excitation based on its infrared spectrum. The latter usually shows more features, allowing the discrimination between species than the UV-Vis spectrum. Here, we show that it is possible to induce and monitor species-selective photochemistry even for molecules with virtually identical UV-Vis spectra, which is the case for isotopomers. Next to isotope-selective photochemistry in solution, applications to orthogonal photo-uncaging and species-selective spectroscopy and photochemistry in mixtures are within reach.

12.
J Chem Phys ; 147(16): 164116, 2017 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-29096459

RESUMO

Vibrationally resolved electronic absorption spectra including the effect of vibrational pre-excitation are computed in order to interpret and predict vibronic transitions that are probed in the Vibrationally Promoted Electronic Resonance (VIPER) experiment [L. J. G. W. van Wilderen et al., Angew. Chem., Int. Ed. 53, 2667 (2014)]. To this end, we employ time-independent and time-dependent methods based on the evaluation of Franck-Condon overlap integrals and Fourier transformation of time-domain wavepacket autocorrelation functions, respectively. The time-independent approach uses a generalized version of the FCclasses method [F. Santoro et al., J. Chem. Phys. 126, 084509 (2007)]. In the time-dependent approach, autocorrelation functions are obtained by wavepacket propagation and by the evaluation of analytic expressions, within the harmonic approximation including Duschinsky rotation effects. For several medium-sized polyatomic systems, it is shown that selective pre-excitation of particular vibrational modes leads to a redshift of the low-frequency edge of the electronic absorption spectrum, which is a prerequisite for the VIPER experiment. This effect is typically most pronounced upon excitation of modes that are significantly displaced during the electronic transition, such as ring distortion modes within an aromatic π-system. Theoretical predictions as to which modes show the strongest VIPER effect are found to be in excellent agreement with experiment.

13.
Chembiochem ; 18(23): 2340-2350, 2017 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-28950050

RESUMO

The impact of the incorporation of a non-natural amino acid (NNAA) on protein structure, dynamics, and ligand binding has not been studied rigorously so far. NNAAs are regularly used to modify proteins post-translationally in vivo and in vitro through click chemistry. Herein, structural characterisation of the impact of the incorporation of azidohomoalanine (AZH) into the model protein domain PDZ3 is examined by means of NMR spectroscopy and X-ray crystallography. The structure and dynamics of the apo state of AZH-modified PDZ3 remain mostly unperturbed. Furthermore, the binding of two PDZ3 binding peptides are unchanged upon incorporation of AZH. The interface of the AZH-modified PDZ3 and an azulene-linked peptide for vibrational energy transfer studies has been mapped by means of chemical shift perturbations and NOEs between the unlabelled azulene-linked peptide and the isotopically labelled protein. Co-crystallisation and soaking failed for the peptide-bound holo complex. NMR spectroscopy, however, allowed determination of the protein-ligand interface. Although the incorporation of AZH was minimally invasive for PDZ3, structural analysis of NNAA-modified proteins through the methodology presented herein should be performed to ensure structural integrity of the studied target.


Assuntos
Alanina/análogos & derivados , Proteína 4 Homóloga a Disks-Large/química , Ligantes , Alanina/química , Sequência de Aminoácidos , Dicroísmo Circular , Cristalografia por Raios X , Proteína 4 Homóloga a Disks-Large/genética , Proteína 4 Homóloga a Disks-Large/metabolismo , Marcação por Isótopo , Espectroscopia de Ressonância Magnética , Mutagênese , Domínios PDZ/genética , Domínios PDZ/fisiologia , Peptídeos/química , Peptídeos/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química
14.
Angew Chem Int Ed Engl ; 56(40): 12092-12096, 2017 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-28569441

RESUMO

The photoswitchable piperidine general base catalyst is a prototype structure for light control of catalysis. Its azobenzene moiety moves sterically shielding groups to either protect or expose the active site, thereby changing the basicity and hydrogen-bonding affinity of the compound. The reversible switching dynamics of the catalyst is probed in the infrared spectral range by monitoring hydrogen bond (HB) formation between its active site and methanol (MeOH) as HB donor. Steady-state infrared (IR) and ultrafast IR and UV/Vis spectroscopies are used to uncover ultrafast expulsion of MeOH from the active site within a few picoseconds. Thus, the force generated by the azobenzene moiety even in the final phase of its isomerization is sufficient to break a strong HB within 3 ps and to shut down access to the active site.

15.
Phys Chem Chem Phys ; 19(14): 9676-9678, 2017 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-28349151

RESUMO

Correction for 'Vibrational dynamics and solvatochromism of the label SCN in various solvents and hemoglobin by time dependent IR and 2D-IR spectroscopy' by Luuk J. G. W. van Wilderen et al., Phys. Chem. Chem. Phys., 2014, 16, 19643-19653.

16.
Angew Chem Int Ed Engl ; 54(40): 11624-40, 2015 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-26394274

RESUMO

Ultrafast multidimensional infrared spectroscopy is a powerful method for resolving features of molecular structure and dynamics that are difficult or impossible to address with linear spectroscopy. Augmenting the IR pulse sequences by resonant or nonresonant UV, Vis, or NIR pulses considerably extends the range of application and creates techniques with possibilities far beyond a pure multidimensional IR experiment. These include surface-specific 2D-IR spectroscopy with sub-monolayer sensitivity, ultrafast structure determination in non-equilibrium systems, triggered exchange spectroscopy to correlate reactant and product bands, exploring the interplay of electronic and nuclear degrees of freedom, investigation of interactions between Raman- and IR-active modes, imaging with chemical contrast, sub-ensemble-selective photochemistry, and even steering a reaction by selective IR excitation. We give an overview of useful mixed IR/non-IR pulse sequences, discuss their differences, and illustrate their application potential.


Assuntos
Tetrazóis/química , Simulação de Dinâmica Molecular , Estrutura Molecular , Espectrofotometria Infravermelho , Espectrofotometria Ultravioleta , Vibração
17.
Rev Sci Instrum ; 86(8): 083102, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26329169

RESUMO

A spectroelectrochemical cell has been designed to combine electrochemistry and ultrafast two-dimensional infrared (2D-IR) spectroscopy, which is a powerful tool to extract structure and dynamics information on the femtosecond to picosecond time scale. Our design is based on a gold mirror with the dual role of performing electrochemistry and reflecting IR light. To provide the high optical surface quality required for laser spectroscopy, the gold surface is made by electron beam evaporation on a glass substrate. Electrochemical cycling facilitates in situ collection of ultrafast dynamics of redox-active molecules by means of 2D-IR. The IR beams are operated in reflection mode so that they travel twice through the sample, i.e., the signal size is doubled. This methodology is optimal for small sample volumes and successfully tested with the ferricyanide/ferrocyanide redox system of which the corresponding electrochemically induced 2D-IR difference spectrum is reported.


Assuntos
Eletroquímica/instrumentação , Espectrofotometria Infravermelho/instrumentação , Desenho de Equipamento , Ferrocianetos/química , Fatores de Tempo
18.
J Chem Phys ; 142(21): 212416, 2015 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-26049436

RESUMO

We demonstrate the coupling of ultrafast two-dimensional infrared (2D-IR) spectroscopy to electrochemistry in solution and apply it to flavin mononucleotide, an important cofactor of redox proteins. For this purpose, we designed a spectroelectrochemical cell optimized for 2D-IR measurements in reflection and measured the time-dependent 2D-IR spectra of the oxidized and reduced forms of flavin mononucleotide. The data show anharmonic coupling and vibrational energy transfer between different vibrational modes in the two redox species. Such information is inaccessible with redox-controlled steady-state FTIR spectroscopy. The wide range of applications offered by 2D-IR spectroscopy, such as sub-picosecond structure determination, IR band assignment via energy transfer, disentangling reaction mixtures through band connectivity in the 2D spectra, and the measurement of solvation dynamics and chemical exchange can now be explored under controlled redox potential. The development of this technique furthermore opens new horizons for studying the dynamics of redox proteins.


Assuntos
Mononucleotídeo de Flavina/química , Transferência de Energia , Oxirredução , Espectrofotometria Infravermelho
19.
Phys Chem Chem Phys ; 16(36): 19643-53, 2014 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-25111557

RESUMO

We investigated the characteristics of the thiocyanate (SCN) functional group as a probe of local structural dynamics for 2D-IR spectroscopy of proteins, exploiting the dependence of vibrational frequency on the environment of the label. Steady-state and time-resolved infrared spectroscopy are performed on the model compound methylthiocyanate (MeSCN) in solvents of different polarity, and compared to data obtained on SCN as a local probe introduced as cyanylated cysteine in the protein bovine hemoglobin. The vibrational lifetime of the protein label is determined to be 37 ps, and its anharmonicity is observed to be lower than that of the model compound (which itself exhibits solvent-independent anharmonicity). The vibrational lifetime of MeSCN generally correlates with the solvent polarity, i.e. longer lifetimes in less polar solvents, with the longest lifetime being 158 ps. However, the capacity of the solvent to form hydrogen bonds complicates this simplified picture. The long lifetime of the SCN vibration is in contrast to commonly used azide labels or isotopically-labeled amide I and better suited to monitor structural rearrangements by 2D-IR spectroscopy. We present time-dependent 2D-IR data on the labeled protein which reveal an initially inhomogeneous structure around the CN oscillator. The distribution becomes homogeneous after 5 picoseconds so that spectral diffusion has effectively erased the 'memory' of the CN stretching frequency. Therefore, the 2D-IR data of the label incorporated in hemoglobin demonstrate how SCN can be utilized to sense rearrangements in the local structure on a picosecond timescale.


Assuntos
Hemoglobinas/química , Termodinâmica , Tiocianatos/química , Animais , Bovinos , Solventes/química , Espectrofotometria Infravermelho , Fatores de Tempo , Vibração
20.
Angew Chem Int Ed Engl ; 53(10): 2667-72, 2014 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-24482321

RESUMO

Two-dimensional exchange spectroscopy (2D EXSY) is a powerful method to study the interconversion (chemical exchange) of molecular species in equilibrium. This method has recently been realized in femtosecond 2D-IR spectroscopy, dramatically increasing the time resolution. However, current implementations allow the EXSY signal (and therefore the chemical process of interest) only to be tracked during the lifetime (T1 ) of the observed spectroscopic transition. This is a severe limitation, as typical vibrational T1 are only a few ps. An IR/Vis pulse sequence is presented that overcomes this limit and makes the EXSY signal independent of T1 . The same pulse sequence allows to collect time-resolved IR spectra after electronic excitation of a particular chemical species in a mixture of species with strongly overlapping UV/Vis spectra. Different photoreaction pathways and dynamics of coexisting isomers or of species involved in different intermolecular interactions can thus be revealed, even if the species cannot be isolated because they are in rapid equilibrium.


Assuntos
Cumarínicos/química , Tiazóis/química , Estrutura Molecular , Processos Fotoquímicos , Espectrofotometria Infravermelho , Espectrofotometria Ultravioleta , Fatores de Tempo , Vibração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...