Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Chem ; 7: 830, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31850318

RESUMO

The binary assembly DDA-{Mo132}/OA-γ-Fe2O3 (DDA = didodecyldimethylammonium, {Mo132} = [Mo132O372(CH3COO)30(H2O)72]42-, OA = oleic acid) constitutes one of the two examples in the literature of binary superlattices made of a mixing of nanocrystals and oxo-clusters. In a precedent work, we reported in details the preparation of such magnetic binary systems and studied the effect of the nature of the polyoxometalates (POMs) on the magnetic properties. In the present paper, we study the stability of this model binary assembly under heating at various temperatures. Indeed, especially if magnetic and/or transport properties are targeted, an annealing can be essential to change the phase of the nanocrystals in a more magnetic one and/or to desorb the organic capping of the nano-objects that can constitute an obstacle to the electronic communication between the nano-objects. We gave evidence that the maghemite organization in the binary assembly is maintained until 370°C under vacuum thanks to the presence of the POMs. This latter evolve in the phase MoO3, but still permits to avoid the aggregation of the nanocrystals as well as preserve their periodical arrangement. On the contrary, an assembly made of pure γ-Fe2O3 nanocrystals displays a clear aggregation of the nano-objects from 370°C, as attested by transmission and scanning electronic microscopies and confirmed by magnetic measurements. The stability of the magnetic nanocrystals in such POMs/nanocrystals assemblies opens the way to (i) the elaboration of new binary assemblies from POMs and numerous kinds of nanocrystals with a good control on the magnetic properties and to (ii) the investigation of new physical properties as exchange coupling, or magneto-transport in such systems.

2.
Beilstein J Nanotechnol ; 10: 1166-1176, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31293854

RESUMO

Background: In extrinsically magnetoelectric materials made of two components, the direct magnetoelectric coupling arises from a mechanical strain transmission at the interface due to the shape change of the magnetostrictive component under an external magnetic field. Here, the size of the interface between the two components plays a crucial role. Therefore, the development of nanomaterials exhibiting large surface-to-volume ratios can help to respond to such a requirement. However, the magnetic nanoparticles (NPs) must be highly magnetostrictive and magnetically blocked at room temperature despite their nanometer-size. We describe here the use of the polyol process to synthesize cobalt ferrite (Co x Fe3- x O4) nanoparticles with controlled size and composition and the study of the relationship between size and composition and the magnetic behavior. Methods: We used an improved synthesis of magnetostrictive Co x Fe3- x O4 NPs based on the forced hydrolysis of metallic salts in a polyol solvent, varying the fraction x. Stoichiometric NPs (x = 1) are expected to be highly magnetostrictive while the sub-stoichiometric NPs (particularly for x ≈ 0.7) are expected to be less magnetostrictive but to present a higher magnetocrystalline anisotropy constant, as previously observed in bulk cobalt ferrites. To control the size of the NPs, in order to overcome the superparamagnetic limit, as well as their chemical composition, in order to get the desired magnetomechanic properties, we carried out the reactions for two nominal precursor contents (x = 1 and 0.67), using two different solvents, i.e., triethylene glycol (TriEG) and tetraethylene glycol (TetEG), and three different durations of refluxing (3, 6 and 15 h). The structure, microstructure and composition of the resulting NPs were then investigated by using X-ray diffraction (XRD), transmission electron microscopy (TEM) and X-ray fluorescence spectroscopy (XRF), respectively. The magnetic properties were also evaluated using standard magnetometry. To measure the magnetostrictive response of the particles, the particles were sintered to dense pellets on which strain gauges were bonded, measuring the size variation radially, as a function of a dc magnetic field. Findings: We found two samples, the first one being stoichiometric and magnetostrictive, and the second one being sub-stoichiometric and presenting a higher magnetization, that are appropriate to be used as ferromagnetic building blocks in nanostructured magnetoelectric materials, particularly materials based on polymers. We show that the polyol solvent and the reaction time are two key parameters to control the size and the magnetic properties of the resulting nanoparticles. We believe that these results provide relevant insights to the design of efficient magnetic and magnetostrictive nanoparticles that can be further functionalized by coupling agents, to be contacted with piezoelectric polymers.

3.
Small ; 12(2): 220-8, 2016 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-26578032

RESUMO

In the present article, the successful coassembly of spherical 6.2 nm maghemite (γ-Fe2O3) nanocrystals and giant polyoxometalates (POMs) such as 2.9 nm {Mo132} is demonstrated. To do so, colloidal solutions of oleic acid-capped γ-Fe2O3 and long-chain alkylammonium-encapsulated {Mo132 } dispersed in chloroform are mixed together and supported self-organized binary superlattices are obtained upon the solvent evaporation on immersed substrates. Both electronic microscopy and small angles X-ray scattering data reveal an AB-type structure and an enhanced structuration of the magnetic nanocrystals (MNCs) assembly with POMs in octahedral interstices. Therefore, {Mo132} acts as an efficient binder constituent for improving the nanocrystals ordering in 3D films. Interestingly, in the case of didodecyldimethylammonium (C12)-encapsulated POMs, the long-range ordered binary assemblies are obtained while preserving the nanocrystals magnetic properties due to weak POMs-MNCs interactions. On the other hand, POMs of larger effective diameter can be employed as spacer blocks for MNCs as shown by using {Mo132} capped with dioctadecyldimethylammonium (C18) displaying longer chains. In that case, it is shown that POMs can also be used for fine-tuning the dipolar interactions in γ-Fe2O3 nanocrystal assemblies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...