Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Mais filtros

Base de dados
Tipo de estudo
Intervalo de ano de publicação
Hum Mutat ; 40(7): 938-951, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31067009


ALG3-CDG is one of the very rare types of congenital disorder of glycosylation (CDG) caused by variants in the ER-mannosyltransferase ALG3. Here, we summarize the clinical, biochemical, and genetic data of four new ALG3-CDG patients, who were identified by a type I pattern of serum transferrin and the accumulation of Man5 GlcNAc2 -PP-dolichol in LLO analysis. Additional clinical symptoms observed in our patients comprise sensorineural hearing loss, right-descending aorta, obstructive cardiomyopathy, macroglossia, and muscular hypertonia. We add four new biochemically confirmed variants to the list of ALG3-CDG inducing variants: c.350G>C (p.R117P), c.1263G>A (p.W421*), c.1037A>G (p.N346S), and the intron variant c.296+4A>G. Furthermore, in Patient 1 an additional open-reading frame of 141 bp (AAGRP) in the coding region of ALG3 was identified. Additionally, we show that control cells synthesize, to a minor degree, a hybrid protein composed of the polypeptide AAGRP and ALG3 (AAGRP-ALG3), while in Patient 1 expression of this hybrid protein is significantly increased due to the homozygous variant c.160_196del (g.165C>T). By reviewing the literature and combining our findings with previously published data, we further expand the knowledge of this rare glycosylation defect.

PLoS One ; 14(4): e0215162, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30995231


Dihydropteridine reductase (QDPR) catalyzes the recycling of tetrahydrobiopterin (BH4), a cofactor in dopamine, serotonin, and phenylalanine metabolism. QDPR-deficient patients develop neurological symptoms including hypokinesia, truncal hypotonia, intellectual disability and seizures. The underlying pathomechanisms are poorly understood. We established a zebrafish model for QDPR deficiency and analyzed the expression as well as function of all zebrafish QDPR homologues during embryonic development. The homologues qdpra is essential for pigmentation and phenylalanine metabolism. Qdprb1 is expressed in the proliferative zones of the optic tectum and eye. Knockdown of qdprb1 leads to up-regulation of pro-proliferative genes and increased number of phospho-histone3 positive mitotic cells. Expression of neuronal and astroglial marker genes is concomitantly decreased. Qdprb1 hypomorphic embryos develop microcephaly and reduced eye size indicating a role for qdprb1 in the transition from cell proliferation to differentiation. Glutamine accumulation biochemically accompanies the developmental changes. Our findings provide novel insights into the neuropathogenesis of QDPR deficiency.

PLoS One ; 13(9): e0203707, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30199544


Hyperammonemia is the common biochemical hallmark of urea cycle disorders, activating neurotoxic pathways. If untreated, affected individuals have a high risk of irreversible brain damage and mortality. Here we show that acute hyperammonemia strongly enhances transamination-dependent formation of osmolytic glutamine and excitatory glutamate, thereby inducing neurotoxicity and death in ammoniotelic zebrafish larvae via synergistically acting overactivation of NMDA receptors and bioenergetic impairment induced by depletion of 2-oxoglutarate. Intriguingly, specific and irreversible inhibition of ornithine aminotransferase (OAT) by 5-fluoromethylornithine rescues zebrafish from lethal concentrations of ammonium acetate and corrects hyperammonemia-induced biochemical alterations. Thus, OAT inhibition is a promising and effective therapeutic approach for preventing neurotoxicity and mortality in acute hyperammonemia.

Mol Genet Metab ; 123(3): 364-374, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29396028


Congenital disorders of glycosylation (CDG) are genetic defects in the glycoconjugate biosynthesis. >100 types of CDG are known, most of them cause multi-organ diseases. Here we describe a boy whose leading symptoms comprise cutis laxa, pancreatic insufficiency and hepatosplenomegaly. Whole exome sequencing identified the novel hemizygous mutation c.542T>G (p.L181R) in the X-linked ATP6AP1, an accessory protein of the mammalian vacuolar H+-ATPase, which led to a general N-glycosylation deficiency. Studies of serum N-glycans revealed reduction of complex sialylated and appearance of truncated diantennary structures. Proliferation of the patient's fibroblasts was significantly reduced and doubling time prolonged. Additionally, there were alterations in the fibroblasts' amino acid levels and the acylcarnitine composition. Especially, short-chain species were reduced, whereas several medium- to long-chain acylcarnitines (C14-OH to C18) were elevated. Investigation of the main lipid classes revealed that total cholesterol was significantly enriched in the patient's fibroblasts at the expense of phophatidylcholine and phosphatidylethanolamine. Within the minor lipid species, hexosylceramide was reduced, while its immediate precursor ceramide was increased. Since catalase activity and ACOX3 expression in peroxisomes were reduced, we assume an ATP6AP1-dependent impact on the ß-oxidation of fatty acids. These results help to understand the complex clinical characteristics of this new patient.

Am J Hum Genet ; 99(2): 414-22, 2016 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-27426735


tRNA synthetase deficiencies are a growing group of genetic diseases associated with tissue-specific, mostly neurological, phenotypes. In cattle, cytosolic isoleucyl-tRNA synthetase (IARS) missense mutations cause hereditary weak calf syndrome. Exome sequencing in three unrelated individuals with severe prenatal-onset growth retardation, intellectual disability, and muscular hypotonia revealed biallelic mutations in IARS. Studies in yeast confirmed the pathogenicity of identified mutations. Two of the individuals had infantile hepatopathy with fibrosis and steatosis, leading in one to liver failure in the course of infections. Zinc deficiency was present in all affected individuals and supplementation with zinc showed a beneficial effect on growth in one.

Alelos , Retardo do Crescimento Fetal/genética , Deficiência Intelectual/genética , Isoleucina-tRNA Ligase/genética , Hepatopatias/congênito , Hepatopatias/genética , Hipotonia Muscular/congênito , Hipotonia Muscular/genética , Mutação , Adolescente , Animais , Criança , Pré-Escolar , Suplementos Nutricionais , Fígado Gorduroso/genética , Feminino , Fibrose/genética , Humanos , Lactente , Recém-Nascido , Isoleucina-tRNA Ligase/deficiência , Falência Hepática/genética , Masculino , Síndrome , Peixe-Zebra/genética , Zinco/administração & dosagem , Zinco/deficiência , Zinco/uso terapêutico