Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Filtros adicionais











Intervalo de ano
1.
Neuro Oncol ; 2019 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-31504799

RESUMO

BACKGROUND: Atypical teratoid/rhabdoid tumors (AT/RT) are rare, but highly aggressive. These entities are of embryonal origin occurring in the central nervous system (CNS) of young children. Molecularly these tumors are driven by a single hallmark mutation, resulting in inactivation of SMARCB1 or SMARCA4. Additionally, activation of the MAPK signaling axis and preclinical antitumor efficacy of its inhibition have been described in AT/RT. METHODS: We established and validated a patient-derived neurosphere culture and xenograft model of Sonic Hedgehog (SHH) subtype AT/RT, at diagnosis and relapse from the same patient. We set out to study the vascular phenotype of these tumors to evaluate the integrity of the blood-brain barrier (BBB) in AT/RT. We also used the model to study combined MEK and MELK inhibition as a therapeutic strategy for AT/RT. RESULTS: We found MELK to be highly overexpressed in both patient samples of AT/RT and in our primary cultures and xenografts. We identified a potent antitumor efficacy of the MELK inhibitor OTSSP167, as well as strong synergy with the MEK inhibitor trametinib, against primary AT/RT neurospheres. Additionally, vascular phenotyping of AT/RT patient material and xenografts revealed significant BBB aberrancies in these tumors. Finally, we show in vivo efficacy of the non-BBB penetrable drugs OTSSP167 and trametinib in AT/RT xenografts, demonstrating the therapeutic implications of the observed BBB deficiencies and validating MEK/MELK inhibition as a potential treatment. CONCLUSION: Altogether, we developed a combination treatment strategy for AT/RT based on MEK/MELK inhibition and identify therapeutically exploitable BBB deficiencies in these tumors.

2.
Neurology ; 92(11): e1225-e1237, 2019 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-30737337

RESUMO

OBJECTIVE: To describe the leukodystrophy caused by pathogenic variants in LARS2 and KARS, encoding mitochondrial leucyl transfer RNA (tRNA) synthase and mitochondrial and cytoplasmic lysyl tRNA synthase, respectively. METHODS: We composed a group of 5 patients with leukodystrophy, in whom whole-genome or whole-exome sequencing revealed pathogenic variants in LARS2 or KARS. Clinical information, brain MRIs, and postmortem brain autopsy data were collected. We assessed aminoacylation activities of purified mutant recombinant mitochondrial leucyl tRNA synthase and performed aminoacylation assays on patients' lymphoblasts and fibroblasts. RESULTS: Patients had a combination of early-onset deafness and later-onset neurologic deterioration caused by progressive brain white matter abnormalities on MRI. Female patients with LARS2 pathogenic variants had premature ovarian failure. In 2 patients, MRI showed additional signs of early-onset vascular abnormalities. In 2 other patients with LARS2 and KARS pathogenic variants, magnetic resonance spectroscopy revealed elevated white matter lactate, suggesting mitochondrial disease. Pathology in one patient with LARS2 pathogenic variants displayed evidence of primary disease of oligodendrocytes and astrocytes with lack of myelin and deficient astrogliosis. Aminoacylation activities of purified recombinant mutant leucyl tRNA synthase showed a 3-fold loss of catalytic efficiency. Aminoacylation assays on patients' lymphoblasts and fibroblasts showed about 50% reduction of enzyme activity. CONCLUSION: This study adds LARS2 and KARS pathogenic variants as gene defects that may underlie deafness, ovarian failure, and leukodystrophy with mitochondrial signature. We discuss the specific MRI characteristics shared by leukodystrophies caused by mitochondrial tRNA synthase defects. We propose to add aminoacylation assays as biochemical diagnostic tools for leukodystrophies.

3.
Orphanet J Rare Dis ; 14(1): 33, 2019 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-30736844

RESUMO

BACKGROUND: MNGIE is a rare and fatal disease in which absence of the enzyme thymidine phosphorylase induces systemic accumulation of thymidine and deoxyuridine and secondary mitochondrial DNA alterations. Gastrointestinal (GI) symptoms are frequently reported in MNGIE patients, however, they are not resolved with the current treatment interventions. Recently, our understanding of the GI pathology has increased, which rationalizes the pursuit of more targeted therapeutic strategies. In particular, interstitial cells of Cajal (ICC) play key roles in GI physiology and are involved in the pathogenesis of the GI dysmotility. However, understanding of the triggers of ICC deficits in MNGIE is lacking. Herein, we review the current knowledge about the pathology of GI dysmotility in MNGIE, discuss potential mechanisms in relation to ICC loss/dysfunction, remark on the limited contribution of the current treatments, and propose intervention strategies to overcome ICC deficits. Finally, we address the advances and new research avenues offered by organoids and tissue engineering technologies, and propose schemes to implement to further our understanding of the GI pathology and utility in regenerative and personalized medicine in MNGIE. CONCLUSION: Interstitial cells of Cajal play key roles in the physiology of the gastrointestinal motility. Evaluation of their status in the GI dysmotility related to MNGIE would be valuable for diagnosis of MNGIE. Understanding the underlying pathological and molecular mechanisms affecting ICC is an asset for the development of targeted prevention and treatment strategies for the GI dysmotility related to MNGIE.


Assuntos
Gastroenteropatias/patologia , Células Intersticiais de Cajal/patologia , Timidina Fosforilase/deficiência , Feminino , Gastroenteropatias/metabolismo , Humanos , Células Intersticiais de Cajal/metabolismo , Pseudo-Obstrução Intestinal/metabolismo , Pseudo-Obstrução Intestinal/patologia , Masculino , Distrofia Muscular Oculofaríngea/metabolismo , Distrofia Muscular Oculofaríngea/patologia , Mutação/genética , Timidina Fosforilase/genética , Timidina Fosforilase/metabolismo
4.
Clin Cancer Res ; 24(22): 5645-5657, 2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-30061363

RESUMO

Purpose: Diffuse intrinsic pontine glioma (DIPG) is a highly aggressive pediatric brain tumor, for which no effective therapeutic options currently exist. We here determined the potential of inhibition of the maternal embryonic leucine zipper kinase (MELK) for the treatment of DIPG.Experimental Design: We evaluated the antitumor efficacy of the small-molecule MELK inhibitor OTSSP167 in vitro in patient-derived DIPG cultures, and identified the mechanism of action of MELK inhibition in DIPG by RNA sequencing of treated cells. In addition, we determined the blood-brain barrier (BBB) penetration of OTSSP167 and evaluated its translational potential by treating mice bearing patient-derived DIPG xenografts.Results: This study shows that MELK is highly expressed in DIPG cells, both in patient samples and in relevant in vitro and in vivo models, and that treatment with OTSSP167 strongly decreases proliferation of patient-derived DIPG cultures. Inhibition of MELK in DIPG cells functions through reducing inhibitory phosphorylation of PPARγ, resulting in an increase in nuclear translocation and consequent transcriptional activity. Brain pharmacokinetic analyses show that OTSSP167 is a strong substrate for both MDR1 and BCRP, limiting its BBB penetration. Nonetheless, treatment of Mdr1a/b;Bcrp1 knockout mice carrying patient-derived DIPG xenografts with OTSSP167 decreased tumor growth, induced remissions, and resulted in improved survival.Conclusions: We show a strong preclinical effect of the kinase inhibitor OTSSP167 in the treatment of DIPG and identify the MELK-PPARγ signaling axis as a putative therapeutic target in this disease. Clin Cancer Res; 24(22); 5645-57. ©2018 AACR.

5.
Brain Pathol ; 28(3): 369-371, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29740940

RESUMO

Leukodystrophies are genetically determined disorders due to defects in any structural components of the brain white matter. This mini-symposium presents a selection of leukodystrophies due to astrocytic dysfunction, the astrocytopathies. Examples are provided of astrocytopathies due to defects in astrocyte-specific proteins and in which astrocytes play a major role in the pathophysiology. Knowledge on the disease mechanisms underlying these leukodystrophies also provides information how loss of physiologic functions and gain of detrimental functions in astrocytes leads to degeneration of the white matter.

6.
Brain Pathol ; 28(3): 408-421, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29740943

RESUMO

VWM is one of the most prevalent leukodystrophies with unique clinical, pathological and molecular features. It mostly affects children, but may develop at all ages, from birth to senescence. It is dominated by cerebellar ataxia and susceptible to stresses that act as factors provoking disease onset or episodes of rapid neurological deterioration possibly leading to death. VWM is caused by mutations in any of the genes encoding the five subunits of the eukaryotic translation initiation factor 2B (eIF2B). Although eIF2B is ubiquitously expressed, VWM primarily manifests as a leukodystrophy with increasing white matter rarefaction and cystic degeneration, meager astrogliosis with no glial scarring and dysmorphic immature astrocytes and increased numbers of oligodendrocyte progenitor cells that are restrained from maturing into myelin-forming cells. Recent findings point to a central role for astrocytes in driving the brain pathology, with secondary effects on both oligodendroglia and axons. In this, VWM belongs to the growing group of astrocytopathies, in which loss of essential astrocytic functions and gain of detrimental functions drive degeneration of the white matter. Additional disease mechanisms include activation of the unfolded protein response with constitutive predisposition to cellular stress, failure of astrocyte-microglia crosstalk and possibly secondary effects on the oxidative phosphorylation. VWM involves a translation initiation factor. The group of leukodystrophies due to defects in mRNA translation is also growing, suggesting that this may be a common disease mechanism. The combination of all these features makes VWM an intriguing natural model to understand the biology and pathology of the white matter.

7.
Ann Clin Transl Neurol ; 5(4): 429-444, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29687020

RESUMO

Objective: We aimed to study the occurrence and development of axonal pathology and the influence of astrocytes in vanishing white matter. Methods: Axons and myelin were analyzed using electron microscopy and immunohistochemistry on Eif2b4 and Eif2b5 single- and double-mutant mice and patient brain tissue. In addition, astrocyte-forebrain co-culture studies were performed. Results: In the corpus callosum of Eif2b5-mutant mice, myelin sheath thickness, axonal diameter, and G-ratio developed normally up to 4 months. At 7 months, however, axons had become thinner, while in control mice axonal diameters had increased further. Myelin sheath thickness remained close to normal, resulting in an abnormally low G-ratio in Eif2b5-mutant mice. In more severely affected Eif2b4-Eif2b5 double-mutants, similar abnormalities were already present at 4 months, while in milder affected Eif2b4 mutants, few abnormalities were observed at 7 months. Additionally, from 2 months onward an increased percentage of thin, unmyelinated axons and increased axonal density were present in Eif2b5-mutant mice. Co-cultures showed that Eif2b5 mutant astrocytes induced increased axonal density, also in control forebrain tissue, and that control astrocytes induced normal axonal density, also in mutant forebrain tissue. In vanishing white matter patient brains, axons and myelin sheaths were thinner than normal in moderately and severely affected white matter. In mutant mice and patients, signs of axonal transport defects and cytoskeletal abnormalities were minimal. Interpretation: In vanishing white matter, axons are initially normal and atrophy later. Astrocytes are central in this process. If therapy becomes available, axonal pathology may be prevented with early intervention.

8.
Ann Clin Transl Neurol ; 4(7): 450-465, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28695146

RESUMO

OBJECTIVE: Megalencephalic leukoencephalopathy with cysts (MLC) is a genetic infantile-onset disease characterized by macrocephaly and white matter edema due to loss of MLC1 function. Recessive mutations in either MLC1 or GLIALCAM cause the disease. MLC1 is involved in astrocytic volume regulation; GlialCAM ensures the correct membrane localization of MLC1. Their exact role in brain ion-water homeostasis is only partly defined. We characterized Glialcam-null mice for further studies. METHODS: We investigated the consequences of loss of GlialCAM in Glialcam-null mice and compared GlialCAM developmental expression in mice and men. RESULTS: Glialcam-null mice had early-onset megalencephaly and increased brain water content. From 3 weeks, astrocytes were abnormal with swollen processes abutting blood vessels. Concomitantly, progressive white matter vacuolization developed due to intramyelinic edema. Glialcam-null astrocytes showed abolished expression of MLC1, reduced expression of the chloride channel ClC-2 and increased expression and redistribution of the water channel aquaporin4. Expression of other MLC1-interacting proteins and the volume regulated anion channel LRRC8A was unchanged. In mice, GlialCAM expression increased until 3 weeks and then stabilized. In humans, GlialCAM expression was highest in the first 3 years to then decrease and stabilize from approximately 5 years. INTERPRETATION: Glialcam-null mice replicate the early stages of the human disease with early-onset intramyelinic edema. The earliest change is astrocytic swelling, further substantiating that a defect in astrocytic volume regulation is the primary cellular defect in MLC. GlialCAM expression affects expression of MLC1, ClC-2 and aquaporin4, indicating that abnormal interplay between these proteins is a disease mechanism in megalencephalic leukoencephalopathy with cysts.

9.
Front Mol Neurosci ; 10: 206, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28713239

RESUMO

Chronic neuroinflammation, which is primarily mediated by microglia, plays an essential role in aging and neurodegeneration. It is still unclear whether this microglia-induced neuroinflammation occurs globally or is confined to distinct brain regions. In this study, we investigated microglia activity in various brain regions upon healthy aging and Alzheimer's disease (AD)-related pathology in both human and mouse samples. In purified microglia isolated from aging mouse brains, we found a profound gene expression pattern related to pro-inflammatory processes, phagocytosis, and lipid homeostasis. Particularly in white matter microglia of 24-month-old mice, abundant expression of phagocytic markers including Mac-2, Axl, CD16/32, Dectin1, CD11c, and CD36 was detected. Interestingly, in white matter of human brain tissue the first signs of inflammatory activity were already detected during middle age. Thus quantification of microglial proteins, such as CD68 (commonly associated with phagocytosis) and HLA-DR (associated with antigen presentation), in postmortem human white matter brain tissue showed an age-dependent increase in immunoreactivity already in middle-aged people (53.2 ± 2.0 years). This early inflammation was also detectable by non-invasive positron emission tomography imaging using [11C]-(R)-PK11195, a ligand that binds to activated microglia. Increased microglia activity was also prominently present in the white matter of human postmortem early-onset AD (EOAD) brain tissue. Interestingly, microglia activity in the white matter of late-onset AD (LOAD) CNS was similar to that of the aged clinically silent AD cases. These data indicate that microglia-induced neuroinflammation is predominant in the white matter of aging mice and humans as well as in EOAD brains. This white matter inflammation may contribute to the progression of neurodegeneration, and have prognostic value for detecting the onset and progression of aging and neurodegeneration.

10.
Immunology ; 149(2): 146-56, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27388634

RESUMO

Current therapies for multiple sclerosis (MS) reduce the frequency of relapses by modulating adaptive immune responses but fail to limit the irreversible neurodegeneration driving progressive disability. Experimental autoimmune encephalomyelitis (EAE) in Biozzi ABH mice recapitulates clinical features of MS including relapsing-remitting episodes and secondary-progressive disability. To address the contribution of recurrent inflammatory events and ageing as factors that amplify progressive neurological disease, we examined EAE in 8- to 12-week-old and 12-month-old ABH mice. Compared with the relapsing-remitting (RREAE) and secondary progressive (SPEAE) EAE observed in young mice, old mice developed progressive disease from onset (PEAE) associated with pronounced axonal damage and increased numbers of CD3(+) T cells and microglia/macrophages, but not B cells. Whereas the clinical neurological features of PEAE and SPEAE were comparable, the pathology was distinct. SPEAE was associated with significantly reduced perivascular infiltrates and T-cell numbers in the central nervous system (CNS) compared with PEAE and the acute phase of RREAE. In contrast to perivascular infiltrates that declined during progression from RREAE into SPEAE, the numbers of microglia clusters remained constant. Similar to what is observed during MS, the microglia clusters emerging during EAE were associated with axonal damage and oligodendrocytes expressing heat-shock protein B5, but not lymphocytes. Taken together, our data reveal that the course of EAE is dependent on the age of the mice. Younger mice show a relapsing-remitting phase followed by progressive disease, whereas old mice immediately show progression. This indicates that recurrent episodes of inflammation in the CNS, as well as age, contribute to progressive neurological disease.


Assuntos
Envelhecimento/imunologia , Encefalomielite Autoimune Experimental/imunologia , Esclerose Múltipla/imunologia , Inflamação Neurogênica/imunologia , Oligodendroglia/imunologia , Linfócitos T/imunologia , Cadeia B de alfa-Cristalina/metabolismo , Animais , Apoptose , Células Cultivadas , Progressão da Doença , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos , Estresse Oxidativo , Regulação para Cima , Cadeia B de alfa-Cristalina/genética
11.
Acta Neuropathol Commun ; 3: 87, 2015 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-26694816

RESUMO

INTRODUCTION: The important protective role of small heat-shock proteins (HSPs) in regulating cellular survival and migration, counteracting protein aggregation, preventing apoptosis, and regulating inflammation in the central nervous system is now well-recognized. Yet, their role in the neuroinflammatory disorder multiple sclerosis (MS) is largely undocumented. With the exception of alpha B-crystallin (HSPB5), little is known about the roles of small HSPs in disease. RESULTS: Here, we examined the expression of four small HSPs during lesion development in MS, focussing on their cellular distribution, and regional differences between white matter (WM) and grey matter (GM). It is well known that MS lesions in these areas differ markedly in their pathology, with substantially more intense blood-brain barrier damage, leukocyte infiltration and microglial activation typifying WM but not GM lesions. We analysed transcript levels and protein distribution profiles for HSPB1, HSPB6, HSPB8 and HSPB11 in MS lesions at different stages, comparing them with normal-appearing brain tissue from MS patients and non-neurological controls. During active stages of demyelination in WM, and especially the centre of chronic active MS lesions, we found significantly increased expression of HSPB1, HSPB6 and HSPB8, but not HSPB11. When induced, small HSPs were exclusively found in astrocytes but not in oligodendrocytes, microglia or neurons. Surprisingly, while the numbers of astrocytes displaying high expression of small HSPs were markedly increased in actively demyelinating lesions in WM, no such induction was observed in GM lesions. This difference was particularly obvious in leukocortical lesions covering both WM and GM areas. CONCLUSIONS: Since induction of small HSPs in astrocytes is apparently a secondary response to damage, their differential expression between WM and GM likely reflects differences in mediators that accompany demyelination in either WM or GM during MS. Our findings also suggest that during MS, cortical structures fail to benefit from the protective actions of small HSPs.


Assuntos
Regulação da Expressão Gênica/fisiologia , Substância Cinzenta/metabolismo , Proteínas de Choque Térmico Pequenas/metabolismo , Esclerose Múltipla/patologia , Substância Branca/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Sistema Nervoso Central/patologia , Feminino , Proteína Glial Fibrilar Ácida/metabolismo , Antígenos HLA-DR/metabolismo , Proteínas de Choque Térmico Pequenas/genética , Humanos , Imagem por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Proteína Proteolipídica de Mielina/metabolismo , RNA Mensageiro/metabolismo , Estatísticas não Paramétricas
12.
Eur J Immunol ; 45(6): 1808-19, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25756873

RESUMO

Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system (CNS). Infiltration of monocytes into the CNS is crucial for disease onset and progression. Animal studies indicate that granulocyte-macrophages colony-stimulating factor (GM-CSF) may play an essential role in this process, possibly by acting on the migratory capacities of myeloid cells across the blood-brain barrier. This study describes the effect of GM-CSF on human monocytes, macrophages, and microglia. Furthermore, the expression of GM-CSF and its receptor was investigated in the CNS under healthy and pathological conditions. We show that GM-CSF enhances monocyte migration across human blood-brain barrier endothelial cells in vitro. Next, immunohistochemical analysis on human brain tissues revealed that GM-CSF is highly expressed by microglia and macrophages in MS lesions. The GM-CSF receptor is expressed by neurons in the rim of combined gray/white matter lesions and astrocytes. Finally, the effect of GM-CSF on human macrophages was determined, revealing an intermediate activation status, with a phenotype similar to that observed in active MS lesions. Together our data indicate that GM-CSF is a powerful stimulator of monocyte migration, and is abundantly present in the inflamed CNS where it may act as an activator of macrophages and microglia.


Assuntos
Barreira Hematoencefálica/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Monócitos/imunologia , Monócitos/metabolismo , Migração Transendotelial e Transepitelial/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Barreira Hematoencefálica/patologia , Encéfalo/imunologia , Encéfalo/metabolismo , Encéfalo/patologia , Células Cultivadas , Citocinas/metabolismo , Células Endoteliais , Feminino , Expressão Gênica , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Humanos , Ativação de Macrófagos/efeitos dos fármacos , Ativação de Macrófagos/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Microglia/imunologia , Microglia/metabolismo , Pessoa de Meia-Idade , Monócitos/efeitos dos fármacos , Esclerose Múltipla/genética , Esclerose Múltipla/imunologia , Esclerose Múltipla/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/genética , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/metabolismo , Migração Transendotelial e Transepitelial/efeitos dos fármacos
13.
J Neuropathol Exp Neurol ; 74(1): 48-63, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25470347

RESUMO

Similar to macrophages, microglia adopt diverse activation states and contribute to repair and tissue damage in multiple sclerosis. Using reverse transcription-quantitative polymerase chain reaction and immunohistochemistry, we show that in vitro M1-polarized (proinflammatory) human adult microglia express the distinctive markers CD74, CD40, CD86, and CCR7, whereas M2 (anti-inflammatory) microglia express mannose receptor and the anti-inflammatory cytokine CCL22. The expression of these markers was assessed in clusters of activated microglia in normal-appearing white matter (preactive lesions) and areas of remyelination, representing reparative multiple sclerosis lesions. We show that activated microglia in preactive and remyelinating lesions express CD74, CD40, CD86, and the M2 markers CCL22 and CD209, but not mannose receptor. To examine whether this intermediate microglia profile is static or dynamic and thus susceptible to changes in the microenvironment, we polarized microglia into M1 or M2 phenotype in vitro and then subsequently treated them with the opposing polarization regimen. These studies revealed that expression of CD40, CXCL10, and mannose receptor is dynamic and that microglia, like macrophages, can switch between M1 and M2 phenotypic profiles. Taken together, our data define the differential activation states of microglia during lesion development in multiple sclerosis-affected CNS tissues and underscore the plasticity of human adult microglia in vitro.


Assuntos
Encéfalo/patologia , Antígenos de Histocompatibilidade Classe II/metabolismo , Microglia/patologia , Esclerose Múltipla/patologia , Proteína Proteolipídica de Mielina/metabolismo , Idoso , Idoso de 80 Anos ou mais , Antígenos CD/genética , Antígenos CD/metabolismo , Diferenciação Celular/fisiologia , Células Cultivadas , Citocinas/genética , Citocinas/metabolismo , Feminino , Citometria de Fluxo , Humanos , Macrófagos/patologia , Masculino , Microglia/metabolismo , Pessoa de Meia-Idade , Proteína Proteolipídica de Mielina/genética , RNA Mensageiro/metabolismo , Estatísticas não Paramétricas , Transcriptoma
14.
Immunobiology ; 219(9): 695-703, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24916404

RESUMO

Macrophages form a heterogeneous cell population displaying multiple functions, and can be polarized into pro- (M1) or anti-inflammatory (M2) macrophages, by environmental factors. Their activation status reflects a beneficial or detrimental role in various diseases. Currently several in vitro maturation and activation protocols are used to induce an M1 or M2 phenotype. Here, the impact of different maturation factors (NHS, M-CSF, or GM-CSF) and activation methods (IFN-γ/LPS, IL-4, dexamethason, IL-10) on the macrophage phenotype was determined. Regarding macrophage morphology, pro-inflammatory (M1) activation stimulated cell elongation, and anti-inflammatory (M2) activation induced a circular appearance. Activation with pro-inflammatory mediators led to increased CD40 and CD64 expression, whereas activation with anti-inflammatory factors resulted in increased levels of MR and CD163. Production of pro-inflammatory cytokines was induced by activation with IFN-γ/LPS, and TGF-ß production was enhanced by the maturation factors M-CSF and GM-CSF. Our data demonstrate that macrophage marker expression and cytokine production in vitro is highly dependent on both maturation and activation methods. In vivo macrophage activation is far more complex, since a plethora of stimuli are present. Hence, defining the macrophage activation status ex vivo on a limited number of markers could be indecisive. From this study we conclude that maturation with M-CSF or GM-CSF induces a moderate anti- or pro-inflammatory state respectively, compared to maturation with NHS. CD40 and CD64 are the most distinctive makers for human M1 and CD163 and MR for M2 macrophage activation and therefore can be helpful in determining the activation status of human macrophages ex vivo.


Assuntos
Técnicas Imunológicas , Ativação de Macrófagos/imunologia , Macrófagos/imunologia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/imunologia , Células Cultivadas , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Humanos , Técnicas In Vitro , Ativação de Macrófagos/efeitos dos fármacos , Fator Estimulador de Colônias de Macrófagos/farmacologia , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Soro
15.
J Neuroinflammation ; 11: 23, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24485070

RESUMO

BACKGROUND: In neuroinflammatory diseases, macrophages can play a dual role in the process of tissue damage, depending on their activation status (M1 / M2). M1 macrophages are considered to exert damaging effects to neurons, whereas M2 macrophages are reported to aid regeneration and repair of neurons. Their migration within the central nervous system may be of critical importance in the final outcome of neurodegeneration in neuroinflammatory diseases e.g. multiple sclerosis (MS). To provide insight into this process, we examined the migratory capacity of human monocyte-derived M1 and M2 polarised macrophages towards chemoattractants, relevant for neuroinflammatory diseases like MS. METHODS: Primary cultures of human monocyte-derived macrophages were exposed to interferon gamma and lipopolysaccharide (LPS) to evoke proinflammatory (M1) activation or IL-4 to evoke anti-inflammatory (M2) activation. In a TAXIScan assay, migration of M0, M1 and M2 towards chemoattractants was measured and quantified. Furthermore the adhesion capacity and the expression levels of integrins as well as chemokine receptors of M0, M1 and M2 were assessed. Alterations in cell morphology were analysed using fluorescent labelling of the cytoskeleton. RESULTS: Significant differences were observed between M1 and M2 macrophages in the migration towards chemoattractants. We show that M2 macrophages migrated over longer distances towards CCL2, CCL5, CXCL10, CXCL12 and C1q compared to non-activated (M0) and M1 macrophages. No differences were observed in the adhesion of M0, M1 and M2 macrophages to multiple matrix components, nor in the expression of integrins and chemokine receptors. Significant changes were observed in the cytoskeleton organization upon stimulation with CCL2, M0, M1 and M2 macrophages adopt a spherical morphology and the cytoskeleton is rapidly rearranged. M0 and M2 macrophages are able to form filopodia, whereas M1 macrophages only adapt a spherical morphology. CONCLUSIONS: Together our results indicate that the alternative activation status of macrophages promotes their migratory properties to chemoattractants relevant for neuroinflammatory diseases like MS. Conversely, classically activated, proinflammatory macrophages have reduced migratory properties. Based on our results, we postulate that the activation status of the macrophage influences the capacity of the macrophages to rearrange their cytoskeleton. This is the first step in understanding how modulation of macrophage activation affects macrophage migration in neuroinflammatory diseases like MS.


Assuntos
Movimento Celular/fisiologia , Citocinas/metabolismo , Citoesqueleto/metabolismo , Regulação da Expressão Gênica/fisiologia , Macrófagos/fisiologia , Adesão Celular , Células Cultivadas , Complemento C1q/metabolismo , Ensaio de Imunoadsorção Enzimática , Humanos , Interferon gama/farmacologia , Lipopolissacarídeos/farmacologia , Receptores de Quimiocinas/metabolismo
16.
Immunology ; 142(2): 151-66, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24329535

RESUMO

Neurodegeneration, the progressive dysfunction and loss of neurons in the central nervous system (CNS), is the major cause of cognitive and motor dysfunction. While neuronal degeneration is well-known in Alzheimer's and Parkinson's diseases, it is also observed in neurotrophic infections, traumatic brain and spinal cord injury, stroke, neoplastic disorders, prion diseases, multiple sclerosis and amyotrophic lateral sclerosis, as well as neuropsychiatric disorders and genetic disorders. A common link between these diseases is chronic activation of innate immune responses including those mediated by microglia, the resident CNS macrophages. Such activation can trigger neurotoxic pathways leading to progressive degeneration. Yet, microglia are also crucial for controlling inflammatory processes, and repair and regeneration. The adaptive immune response is implicated in neurodegenerative diseases contributing to tissue damage, but also plays important roles in resolving inflammation and mediating neuroprotection and repair. The growing awareness that the immune system is inextricably involved in mediating damage as well as regeneration and repair in neurodegenerative disorders, has prompted novel approaches to modulate the immune system, although it remains whether these approaches can be used in humans. Additional factors in humans include ageing and exposure to environmental factors such as systemic infections that provide additional clues that may be human specific and therefore difficult to translate from animal models. Nevertheless, a better understanding of how immune responses are involved in neuronal damage and regeneration, as reviewed here, will be essential to develop effective therapies to improve quality of life, and mitigate the personal, economic and social impact of these diseases.


Assuntos
Doenças Neurodegenerativas/imunologia , Humanos , Inflamação/imunologia , Doenças Neurodegenerativas/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA