Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Mais filtros

Base de dados
Intervalo de ano de publicação
Adv Exp Med Biol ; 1131: 131-161, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31646509


Calcium (Ca2+) is a fundamental regulator of cell fate and intracellular Ca2+ homeostasis is crucial for proper function of the nerve cells. Given the complexity of neurons, a constellation of mechanisms finely tunes the intracellular Ca2+ signaling. We are focusing on the sarco/endoplasmic reticulum (SR/ER) calcium (Ca2+)-ATPase (SERCA) pump, an integral ER protein. SERCA's well established role is to preserve low cytosolic Ca2+ levels ([Ca2+]cyt), by pumping free Ca2+ ions into the ER lumen, utilizing ATP hydrolysis. The SERCA pumps are encoded by three distinct genes, SERCA1-3, resulting in 12 known protein isoforms, with tissue-dependent expression patterns. Despite the well-established structure and function of the SERCA pumps, their role in the central nervous system is not clear yet. Interestingly, SERCA-mediated Ca2+ dyshomeostasis has been associated with neuropathological conditions, such as bipolar disorder, schizophrenia, Parkinson's disease and Alzheimer's disease. We summarize here current evidence suggesting a role for SERCA in the neurobiology of neuropsychiatric and neurodegenerative disorders, thus highlighting the importance of this pump in brain physiology and pathophysiology.

Encéfalo , Retículo Endoplasmático , Doenças do Sistema Nervoso , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático , Encéfalo/enzimologia , Encéfalo/patologia , Retículo Endoplasmático/enzimologia , Regulação Enzimológica da Expressão Gênica , Homeostase , Humanos , Doenças do Sistema Nervoso/enzimologia , Doenças do Sistema Nervoso/fisiopatologia , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo
Cell Mol Neurobiol ; 38(5): 981-994, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29663107


Calcium (Ca2+) ions are prominent cell signaling regulators that carry information for a variety of cellular processes and are critical for neuronal survival and function. Furthermore, Ca2+ acts as a prominent second messenger that modulates divergent intracellular cascades in the nerve cells. Therefore, nerve cells have developed intricate Ca2+ signaling pathways to couple the Ca2+ signal to their biochemical machinery. Notably, intracellular Ca2+ homeostasis greatly relies on the rapid redistribution of Ca2+ ions into the diverse subcellular organelles which serve as Ca2+ stores, including the endoplasmic reticulum (ER). It is well established that Ca2+ released into the neuronal cytoplasm is pumped back into the ER by the sarco-/ER Ca2+ ATPase 2 (SERCA2), a P-type ion-motive ATPase that resides on the ER membrane. Even though the SERCA2 is constitutively expressed in nerve cells, its precise role in brain physiology and pathophysiology is not well-characterized. Intriguingly, SERCA2-dependent Ca2+ dysregulation has been implicated in several disorders that affect cognitive function, including Darier's disease, schizophrenia, Alzheimer's disease, and cerebral ischemia. The current review summarizes knowledge on the expression pattern of the different SERCA2 isoforms in the nervous system, and further discusses evidence of SERCA2 dysregulation in various neuropsychiatric disorders. To the best of our knowledge, this is the first literature review that specifically highlights the critical role of the SERCA2 in the brain. Advancing knowledge on the role of SERCA2 in maintaining neuronal Ca2+ homeostasis may ultimately lead to the development of safer and more effective pharmacotherapies to combat debilitating neuropsychiatric disorders.

Encéfalo/enzimologia , Cálcio/metabolismo , Homeostase , Neurônios/enzimologia , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Sequência de Aminoácidos , Animais , Humanos , Transtornos Mentais/enzimologia , Transtornos Mentais/patologia , Neurônios/patologia , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/química
Pharmacol Biochem Behav ; 153: 168-181, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28057525


Challenging the innate immune machinery with the pro-inflammatory agent lipopolysaccharide (LPS) results in the development of a sickness syndrome characterized by numerous depressive-like behavioural and physiological manifestations, most of which overlap with the clinical symptoms of major depression. Although women are known to mount stronger pro-inflammatory responses during infections and being at higher risk to develop depressive disorders compared to men, the vast majority of experimental studies investigating the neurobiological effects of LPS administration have been conducted in males. Herein, we investigated the behavioural effects of LPS administration (0.83mg/kg) in male and female C57BL/6J mice subjected to tests screening for alterations in locomotor activity (open field test), anorexia (food consumption), anhedonia (sucrose preference test), behavioural despair (forced swim test) and grooming behaviour (splash-test). We further mapped the brain's serotonergic and dopaminergic activity in five limbic brain regions implicated in the pathophysiology of major depression (i.e., prefrontal cortex, hippocampus, striatum, amygdala, and hypothalamus) at two critical time-points post-LPS treatment; at 6h when depression of behavioural activity is maximal, and at 24h when depressive-like symptoms develop independently of obvious locomotor performance impairments associated with acute LPS administration. Our findings indicate that the two sexes present with differential behavioural sensitivity to this immune stressor, as impairment of grooming behaviour in the splash test was more persistent in female mice, and anorexia lasted longer in their male counterparts. Notably, LPS affects the brain's serotonergic neurochemistry in a sex-specific manner, as it induced sustained serotonergic hyperactivity in females at 24h post-LPS administration in all the brain regions examined. Moreover, the kinetics of dopaminergic activation appeared to be sex-differentiated upon LPS challenge. Given the higher prevalence of affective disorders in women, a focus of basic science on sex differences that underlie neuroinflammatory processes is imperative in order to elucidate the neuroimmunological substrate of major depression.

Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Serotonina/metabolismo , Animais , Encéfalo/metabolismo , Ingestão de Alimentos/efeitos dos fármacos , Feminino , Asseio Animal/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos dos fármacos , Caracteres Sexuais , Sacarose/administração & dosagem