Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Hum Genet ; 105(4): 706-718, 2019 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-31564435

RESUMO

Hemoglobin A1c (HbA1c) is widely used to diagnose diabetes and assess glycemic control in individuals with diabetes. However, nonglycemic determinants, including genetic variation, may influence how accurately HbA1c reflects underlying glycemia. Analyzing the NHLBI Trans-Omics for Precision Medicine (TOPMed) sequence data in 10,338 individuals from five studies and four ancestries (6,158 Europeans, 3,123 African-Americans, 650 Hispanics, and 407 East Asians), we confirmed five regions associated with HbA1c (GCK in Europeans and African-Americans, HK1 in Europeans and Hispanics, FN3K and/or FN3KRP in Europeans, and G6PD in African-Americans and Hispanics) and we identified an African-ancestry-specific low-frequency variant (rs1039215 in HBG2 and HBE1, minor allele frequency (MAF) = 0.03). The most associated G6PD variant (rs1050828-T, p.Val98Met, MAF = 12% in African-Americans, MAF = 2% in Hispanics) lowered HbA1c (-0.88% in hemizygous males, -0.34% in heterozygous females) and explained 23% of HbA1c variance in African-Americans and 4% in Hispanics. Additionally, we identified a rare distinct G6PD coding variant (rs76723693, p.Leu353Pro, MAF = 0.5%; -0.98% in hemizygous males, -0.46% in heterozygous females) and detected significant association with HbA1c when aggregating rare missense variants in G6PD. We observed similar magnitude and direction of effects for rs1039215 (HBG2) and rs76723693 (G6PD) in the two largest TOPMed African American cohorts, and we replicated the rs76723693 association in the UK Biobank African-ancestry participants. These variants in G6PD and HBG2 were monomorphic in the European and Asian samples. African or Hispanic ancestry individuals carrying G6PD variants may be underdiagnosed for diabetes when screened with HbA1c. Thus, assessment of these variants should be considered for incorporation into precision medicine approaches for diabetes diagnosis.

2.
Epigenomics ; 11(13): 1487-1500, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31536415

RESUMO

Aim: Cigarette smoking influences DNA methylation genome wide, in newborns from pregnancy exposure and in adults from personal smoking. Whether a unique methylation signature exists for in utero exposure in newborns is unknown. Materials & methods: We separately meta-analyzed newborn blood DNA methylation (assessed using Illumina450k Beadchip), in relation to sustained maternal smoking during pregnancy (9 cohorts, 5648 newborns, 897 exposed) and adult blood methylation and personal smoking (16 cohorts, 15907 participants, 2433 current smokers). Results & conclusion: Comparing meta-analyses, we identified numerous signatures specific to newborns along with many shared between newborns and adults. Unique smoking-associated genes in newborns were enriched in xenobiotic metabolism pathways. Our findings may provide insights into specific health impacts of prenatal exposure on offspring.

3.
Circulation ; 140(8): 645-657, 2019 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-31424985

RESUMO

BACKGROUND: DNA methylation is implicated in coronary heart disease (CHD), but current evidence is based on small, cross-sectional studies. We examined blood DNA methylation in relation to incident CHD across multiple prospective cohorts. METHODS: Nine population-based cohorts from the United States and Europe profiled epigenome-wide blood leukocyte DNA methylation using the Illumina Infinium 450k microarray, and prospectively ascertained CHD events including coronary insufficiency/unstable angina, recognized myocardial infarction, coronary revascularization, and coronary death. Cohorts conducted race-specific analyses adjusted for age, sex, smoking, education, body mass index, blood cell type proportions, and technical variables. We conducted fixed-effect meta-analyses across cohorts. RESULTS: Among 11 461 individuals (mean age 64 years, 67% women, 35% African American) free of CHD at baseline, 1895 developed CHD during a mean follow-up of 11.2 years. Methylation levels at 52 CpG (cytosine-phosphate-guanine) sites were associated with incident CHD or myocardial infarction (false discovery rate<0.05). These CpGs map to genes with key roles in calcium regulation (ATP2B2, CASR, GUCA1B, HPCAL1), and genes identified in genome- and epigenome-wide studies of serum calcium (CASR), serum calcium-related risk of CHD (CASR), coronary artery calcified plaque (PTPRN2), and kidney function (CDH23, HPCAL1), among others. Mendelian randomization analyses supported a causal effect of DNA methylation on incident CHD; these CpGs map to active regulatory regions proximal to long non-coding RNA transcripts. CONCLUSION: Methylation of blood-derived DNA is associated with risk of future CHD across diverse populations and may serve as an informative tool for gaining further insight on the development of CHD.

4.
Mol Genet Genomic Med ; 7(10): e00788, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31407531

RESUMO

BACKGROUND: Left ventricular (LV) hypertrophy affects up to 43% of African Americans (AAs). Antihypertensive treatment reduces LV mass (LVM). However, interindividual variation in LV traits in response to antihypertensive treatments exists. We hypothesized that genetic variants may modify the association of antihypertensive treatment class with LV traits measured by echocardiography. METHODS: We evaluated the main effects of the three most common antihypertensive treatments for AAs as well as the single nucleotide polymorphism (SNP)-by-drug interaction on LVM and relative wall thickness (RWT) in 2,068 participants across five community-based cohorts. Treatments included thiazide diuretics (TDs), angiotensin converting enzyme inhibitors (ACE-Is), and dihydropyridine calcium channel blockers (dCCBs) and were compared in a pairwise manner. We performed fixed effects inverse variance weighted meta-analyses of main effects of drugs and 2.5 million SNP-by-drug interaction estimates. RESULTS: We observed that dCCBs versus TDs were associated with higher LVM after adjusting for covariates (p = 0.001). We report three SNPs at a single locus on chromosome 20 that modified the association between RWT and treatment when comparing dCCBs to ACE-Is with consistent effects across cohorts (smallest p = 4.7 × 10-8 , minor allele frequency range 0.09-0.12). This locus has been linked to LV hypertrophy in a previous study. A marginally significant locus in BICD1 (rs326641) was validated in an external population. CONCLUSIONS: Our study identified one locus having genome-wide significant SNP-by-drug interaction effect on RWT among dCCB users in comparison to ACE-I users. Upon additional validation in future studies, our findings can enhance the precision of medical approaches in hypertension treatment.

5.
Blood ; 134(19): 1645-1657, 2019 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-31420334

RESUMO

Venous thromboembolism (VTE) is a significant contributor to morbidity and mortality. To advance our understanding of the biology contributing to VTE, we conducted a genome-wide association study (GWAS) of VTE and a transcriptome-wide association study (TWAS) based on imputed gene expression from whole blood and liver. We meta-analyzed GWAS data from 18 studies for 30 234 VTE cases and 172 122 controls and assessed the association between 12 923 718 genetic variants and VTE. We generated variant prediction scores of gene expression from whole blood and liver tissue and assessed them for association with VTE. Mendelian randomization analyses were conducted for traits genetically associated with novel VTE loci. We identified 34 independent genetic signals for VTE risk from GWAS meta-analysis, of which 14 are newly reported associations. This included 11 newly associated genetic loci (C1orf198, PLEK, OSMR-AS1, NUGGC/SCARA5, GRK5, MPHOSPH9, ARID4A, PLCG2, SMG6, EIF5A, and STX10) of which 6 replicated, and 3 new independent signals in 3 known genes. Further, TWAS identified 5 additional genetic loci with imputed gene expression levels differing between cases and controls in whole blood (SH2B3, SPSB1, RP11-747H7.3, RP4-737E23.2) and in liver (ERAP1). At some GWAS loci, we found suggestive evidence that the VTE association signal for novel and previously known regions colocalized with expression quantitative trait locus signals. Mendelian randomization analyses suggested that blood traits may contribute to the underlying risk of VTE. To conclude, we identified 16 novel susceptibility loci for VTE; for some loci, the association signals are likely mediated through gene expression of nearby genes.

6.
Bioinformatics ; 2019 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-31329242

RESUMO

SUMMARY: The Genomic Data Storage (GDS) format provides efficient storage and retrieval of genotypes measured by microarrays and sequencing. We developed GENESIS to perform various single- and aggregate-variant association tests using genotype data stored in GDS format. GENESIS implements highly flexible mixed models, allowing for different link functions, multiple variance components, and phenotypic heteroskedasticity. GENESIS integrates cohesively with other R/Bioconductor packages to build a complete genomic analysis workflow entirely within the R environment. AVAILABILITY AND IMPLEMENTATION: https://bioconductor.org/packages/GENESIS; vignettes included. SUPPLEMENTARY INFORMATION: Supplementary tables and figures are available at Bioinformatics online.

7.
Nat Hum Behav ; 3(9): 950-961, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31358974

RESUMO

Excessive alcohol consumption is one of the main causes of death and disability worldwide. Alcohol consumption is a heritable complex trait. Here we conducted a meta-analysis of genome-wide association studies of alcohol consumption (g d-1) from the UK Biobank, the Alcohol Genome-Wide Consortium and the Cohorts for Heart and Aging Research in Genomic Epidemiology Plus consortia, collecting data from 480,842 people of European descent to decipher the genetic architecture of alcohol intake. We identified 46 new common loci and investigated their potential functional importance using magnetic resonance imaging data and gene expression studies. We identify genetic pathways associated with alcohol consumption and suggest genetic mechanisms that are shared with neuropsychiatric disorders such as schizophrenia.

8.
Clin Pharmacol Ther ; 2019 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-31220337

RESUMO

Statins can be associated with myopathy. We have undertaken a genomewide association study (GWAS) to discover and validate genetic risk factors for statin-induced myopathy in a "real-world" setting. One hundred thirty-five patients with statin myopathy recruited via the UK Clinical Practice Research Datalink were genotyped using the Illumina OmniExpress Exome version 1.0 Bead Chip and compared with the Wellcome Trust Case-Control Consortium (n = 2,501). Nominally statistically significant single nucleotide polymorphism (SNP) signals in the GWAS (P < 5 × 10-5 ) were further evaluated in several independent cohorts (comprising 332 cases and 449 drug-tolerant controls). Only one (rs4149056/c.521C>T in the SLCO1B1 gene) SNP was genomewide significant in the severe myopathy (creatine kinase > 10 × upper limit of normal or rhabdomyolysis) group (P = 2.55 × 10-9 ; odds ratio 5.15; 95% confidence interval 3.13-8.45). The association with SLCO1B1 was present for several statins and replicated in the independent validation cohorts. The data highlight the role of SLCO1B1 c.521C>T SNP as a replicable genetic risk factor for statin myopathy. No other novel genetic risk factors with a similar effect size were identified.

9.
Am J Clin Nutr ; 110(2): 437-450, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31165884

RESUMO

BACKGROUND: Folate and vitamin B-12 are essential micronutrients involved in the donation of methyl groups in cellular metabolism. However, associations between intake of these nutrients and genome-wide DNA methylation levels have not been studied comprehensively in humans. OBJECTIVE: The aim of this study was to assess whether folate and/or vitamin B-12 intake are asssociated with genome-wide changes in DNA methylation in leukocytes. METHODS: A large-scale epigenome-wide association study of folate and vitamin B-12 intake was performed on DNA from 5841 participants from 10 cohorts using Illumina 450k arrays. Folate and vitamin B-12 intakes were calculated from food-frequency questionnaires (FFQs). Continuous and categorical (low compared with high intake) linear regression mixed models were applied per cohort, controlling for confounders. A meta-analysis was performed to identify significant differentially methylated positions (DMPs) and regions (DMRs), and a pathway analysis was performed on the DMR annotated genes. RESULTS: The categorical model resulted in 6 DMPs, which are all negatively associated with folate intake, annotated to FAM64A, WRAP73, FRMD8, CUX1, and LCN8 genes, which have a role in cellular processes including centrosome localization, cell proliferation, and tumorigenesis. Regional analysis showed 74 folate-associated DMRs, of which 73 were negatively associated with folate intake. The most significant folate-associated DMR was a 400-base pair (bp) spanning region annotated to the LGALS3BP gene. In the categorical model, vitamin B-12 intake was associated with 29 DMRs annotated to 48 genes, of which the most significant was a 1100-bp spanning region annotated to the calcium-binding tyrosine phosphorylation-regulated gene (CABYR). Vitamin B-12 intake was not associated with DMPs. CONCLUSIONS: We identified novel epigenetic loci that are associated with folate and vitamin B-12 intake. Interestingly, we found a negative association between folate and DNA methylation. Replication of these methylation loci is necessary in future studies.

10.
PLoS One ; 14(6): e0218115, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31242253

RESUMO

AIMS: Statin-related myopathy (SRM), which includes rhabdomyolysis, is an uncommon but important adverse drug reaction because the number of people prescribed statins world-wide is large. Previous association studies of common genetic variants have had limited success in identifying a genetic basis for this adverse drug reaction. We conducted a multi-site whole-exome sequencing study to investigate whether rare coding variants confer an increased risk of SRM. METHODS AND RESULTS: SRM 3-5 cases (N = 505) and statin treatment-tolerant controls (N = 2047) were recruited from multiple sites in North America and Europe. SRM 3-5 was defined as symptoms consistent with muscle injury and an elevated creatine phosphokinase level >4 times upper limit of normal without another likely cause of muscle injury. Whole-exome sequencing and variant calling was coordinated from two analysis centres, and results of single-variant and gene-based burden tests were meta-analysed. No genome-wide significant associations were identified. Given the large number of cases, we had 80% power to identify a variant with minor allele frequency of 0.01 that increases the risk of SRM 6-fold at genome-wide significance. CONCLUSIONS: In this large whole-exome sequencing study of severe statin-related muscle injury conducted to date, we did not find evidence that rare coding variants are responsible for this adverse drug reaction. Larger sample sizes would be required to identify rare variants with small effects, but it is unclear whether such findings would be clinically actionable.

11.
J Am Coll Cardiol ; 73(24): 3118-3131, 2019 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-31221261

RESUMO

BACKGROUND: Subclinical changes on the electrocardiogram are risk factors for cardiovascular mortality. Recognition and knowledge of electrolyte associations in cardiac electrophysiology are based on only in vitro models and observations in patients with severe medical conditions. OBJECTIVES: This study sought to investigate associations between serum electrolyte concentrations and changes in cardiac electrophysiology in the general population. METHODS: Summary results collected from 153,014 individuals (54.4% women; mean age 55.1 ± 12.1 years) from 33 studies (of 5 ancestries) were meta-analyzed. Linear regression analyses examining associations between electrolyte concentrations (mmol/l of calcium, potassium, sodium, and magnesium), and electrocardiographic intervals (RR, QT, QRS, JT, and PR intervals) were performed. The study adjusted for potential confounders and also stratified by ancestry, sex, and use of antihypertensive drugs. RESULTS: Lower calcium was associated with longer QT intervals (-11.5 ms; 99.75% confidence interval [CI]: -13.7 to -9.3) and JT duration, with sex-specific effects. In contrast, higher magnesium was associated with longer QT intervals (7.2 ms; 99.75% CI: 1.3 to 13.1) and JT. Lower potassium was associated with longer QT intervals (-2.8 ms; 99.75% CI: -3.5 to -2.0), JT, QRS, and PR durations, but all potassium associations were driven by use of antihypertensive drugs. No physiologically relevant associations were observed for sodium or RR intervals. CONCLUSIONS: The study identified physiologically relevant associations between electrolytes and electrocardiographic intervals in a large-scale analysis combining cohorts from different settings. The results provide insights for further cardiac electrophysiology research and could potentially influence clinical practice, especially the association between calcium and QT duration, by which calcium levels at the bottom 2% of the population distribution led to clinically relevant QT prolongation by >5 ms.

12.
PLoS One ; 14(5): e0216222, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31075152

RESUMO

BACKGROUND: Fibrinogen is an essential hemostatic factor and cardiovascular disease risk factor. Early attempts at evaluating the causal effect of fibrinogen on coronary heart disease (CHD) and myocardial infraction (MI) using Mendelian randomization (MR) used single variant approaches, and did not take advantage of recent genome-wide association studies (GWAS) or multi-variant, pleiotropy robust MR methodologies. METHODS AND FINDINGS: We evaluated evidence for a causal effect of fibrinogen on both CHD and MI using MR. We used both an allele score approach and pleiotropy robust MR models. The allele score was composed of 38 fibrinogen-associated variants from recent GWAS. Initial analyses using the allele score used a meta-analysis of 11 European-ancestry prospective cohorts, free of CHD and MI at baseline, to examine incidence CHD and MI. We also applied 2 sample MR methods with data from a prevalent CHD and MI GWAS. Results are given in terms of the hazard ratio (HR) or odds ratio (OR), depending on the study design, and associated 95% confidence interval (CI). In single variant analyses no causal effect of fibrinogen on CHD or MI was observed. In multi-variant analyses using incidence CHD cases and the allele score approach, the estimated causal effect (HR) of a 1 g/L higher fibrinogen concentration was 1.62 (CI = 1.12, 2.36) when using incident cases and the allele score approach. In 2 sample MR analyses that accounted for pleiotropy, the causal estimate (OR) was reduced to 1.18 (CI = 0.98, 1.42) and 1.09 (CI = 0.89, 1.33) in the 2 most precise (smallest CI) models, out of 4 models evaluated. In the 2 sample MR analyses for MI, there was only very weak evidence of a causal effect in only 1 out of 4 models. CONCLUSIONS: A small causal effect of fibrinogen on CHD is observed using multi-variant MR approaches which account for pleiotropy, but not single variant MR approaches. Taken together, results indicate that even with large sample sizes and multi-variant approaches MR analyses still cannot exclude the null when estimating the causal effect of fibrinogen on CHD, but that any potential causal effect is likely to be much smaller than observed in epidemiological studies.

13.
Nature ; 570(7759): 71-76, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31118516

RESUMO

Protein-coding genetic variants that strongly affect disease risk can yield relevant clues to disease pathogenesis. Here we report exome-sequencing analyses of 20,791 individuals with type 2 diabetes (T2D) and 24,440 non-diabetic control participants from 5 ancestries. We identify gene-level associations of rare variants (with minor allele frequencies of less than 0.5%) in 4 genes at exome-wide significance, including a series of more than 30 SLC30A8 alleles that conveys protection against T2D, and in 12 gene sets, including those corresponding to T2D drug targets (P = 6.1 × 10-3) and candidate genes from knockout mice (P = 5.2 × 10-3). Within our study, the strongest T2D gene-level signals for rare variants explain at most 25% of the heritability of the strongest common single-variant signals, and the gene-level effect sizes of the rare variants that we observed in established T2D drug targets will require 75,000-185,000 sequenced cases to achieve exome-wide significance. We propose a method to interpret these modest rare-variant associations and to incorporate these associations into future target or gene prioritization efforts.


Assuntos
Diabetes Mellitus Tipo 2/genética , Exoma/genética , Sequenciamento Completo do Exoma , Animais , Estudos de Casos e Controles , Técnicas de Apoio para a Decisão , Feminino , Frequência do Gene , Estudo de Associação Genômica Ampla , Humanos , Masculino , Camundongos , Camundongos Knockout
14.
Sleep ; 42(8)2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31139831

RESUMO

STUDY OBJECTIVES: Daytime sleepiness is a consequence of inadequate sleep, sleep-wake control disorder, or other medical conditions. Population variability in prevalence of daytime sleepiness is likely due to genetic and biological factors as well as social and environmental influences. DNA methylation (DNAm) potentially influences multiple health outcomes. Here, we explored the association between DNAm and daytime sleepiness quantified by the Epworth Sleepiness Scale (ESS). METHODS: We performed multi-ethnic and ethnic-specific epigenome-wide association studies for DNAm and ESS in the Multi-Ethnic Study of Atherosclerosis (MESA; n = 619) and the Cardiovascular Health Study (n = 483), with cross-study replication and meta-analysis. Genetic variants near ESS-associated DNAm were analyzed for methylation quantitative trait loci and followed with replication of genotype-sleepiness associations in the UK Biobank. RESULTS: In MESA only, we detected four DNAm-ESS associations: one across all race/ethnic groups; three in African-Americans (AA) only. Two of the MESA AA associations, in genes KCTD5 and RXRA, nominally replicated in CHS (p-value < 0.05). In the AA meta-analysis, we detected 14 DNAm-ESS associations (FDR q-value < 0.05, top association p-value = 4.26 × 10-8). Three DNAm sites mapped to genes (CPLX3, GFAP, and C7orf50) with biological relevance. We also found evidence for associations with DNAm sites in RAI1, a gene associated with sleep and circadian phenotypes. UK Biobank follow-up analyses detected SNPs in RAI1, RXRA, and CPLX3 with nominal sleepiness associations. CONCLUSIONS: We identified methylation sites in multiple genes possibly implicated in daytime sleepiness. Most significant DNAm-ESS associations were specific to AA. Future work is needed to identify mechanisms driving ancestry-specific methylation effects.

15.
Eur J Hum Genet ; 27(6): 952-962, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30679814

RESUMO

Genome-wide association studies (GWAS) of quantitative electrocardiographic (ECG) traits in large consortia have identified more than 130 loci associated with QT interval, QRS duration, PR interval, and heart rate (RR interval). In the current study, we meta-analyzed genome-wide association results from 30,000 mostly Dutch samples on four ECG traits: PR interval, QRS duration, QT interval, and RR interval. SNP genotype data was imputed using the Genome of the Netherlands reference panel encompassing 19 million SNPs, including millions of rare SNPs (minor allele frequency < 5%). In addition to many known loci, we identified seven novel locus-trait associations: KCND3, NR3C1, and PLN for PR interval, KCNE1, SGIP1, and NFKB1 for QT interval, and ATP2A2 for QRS duration, of which six were successfully replicated. At these seven loci, we performed conditional analyses and annotated significant SNPs (in exons and regulatory regions), demonstrating involvement of cardiac-related pathways and regulation of nearby genes.

16.
Am J Hum Genet ; 104(2): 260-274, 2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30639324

RESUMO

With advances in whole-genome sequencing (WGS) technology, more advanced statistical methods for testing genetic association with rare variants are being developed. Methods in which variants are grouped for analysis are also known as variant-set, gene-based, and aggregate unit tests. The burden test and sequence kernel association test (SKAT) are two widely used variant-set tests, which were originally developed for samples of unrelated individuals and later have been extended to family data with known pedigree structures. However, computationally efficient and powerful variant-set tests are needed to make analyses tractable in large-scale WGS studies with complex study samples. In this paper, we propose the variant-set mixed model association tests (SMMAT) for continuous and binary traits using the generalized linear mixed model framework. These tests can be applied to large-scale WGS studies involving samples with population structure and relatedness, such as in the National Heart, Lung, and Blood Institute's Trans-Omics for Precision Medicine (TOPMed) program. SMMATs share the same null model for different variant sets, and a virtue of this null model, which includes covariates only, is that it needs to be fit only once for all tests in each genome-wide analysis. Simulation studies show that all the proposed SMMATs correctly control type I error rates for both continuous and binary traits in the presence of population structure and relatedness. We also illustrate our tests in a real data example of analysis of plasma fibrinogen levels in the TOPMed program (n = 23,763), using the Analysis Commons, a cloud-based computing platform.

17.
Blood ; 133(9): 967-977, 2019 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-30642921

RESUMO

Factor VII (FVII) is an important component of the coagulation cascade. Few genetic loci regulating FVII activity and/or levels have been discovered to date. We conducted a meta-analysis of 9 genome-wide association studies of plasma FVII levels (7 FVII activity and 2 FVII antigen) among 27 495 participants of European and African ancestry. Each study performed ancestry-specific association analyses. Inverse variance weighted meta-analysis was performed within each ancestry group and then combined for a trans-ancestry meta-analysis. Our primary analysis included the 7 studies that measured FVII activity, and a secondary analysis included all 9 studies. We provided functional genomic validation for newly identified significant loci by silencing candidate genes in a human liver cell line (HuH7) using small-interfering RNA and then measuring F7 messenger RNA and FVII protein expression. Lastly, we used meta-analysis results to perform Mendelian randomization analysis to estimate the causal effect of FVII activity on coronary artery disease, ischemic stroke (IS), and venous thromboembolism. We identified 2 novel (REEP3 and JAZF1-AS1) and 6 known loci associated with FVII activity, explaining 19.0% of the phenotypic variance. Adding FVII antigen data to the meta-analysis did not result in the discovery of further loci. Silencing REEP3 in HuH7 cells upregulated FVII, whereas silencing JAZF1 downregulated FVII. Mendelian randomization analyses suggest that FVII activity has a positive causal effect on the risk of IS. Variants at REEP3 and JAZF1 contribute to FVII activity by regulating F7 expression levels. FVII activity appears to contribute to the etiology of IS in the general population.

18.
Genet Epidemiol ; 43(4): 449-457, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30659681

RESUMO

Although recent Genome-Wide Association Studies have identified novel associations for common variants, there has been no comprehensive exome-wide search for low-frequency variants that affect the risk of venous thromboembolism (VTE). We conducted a meta-analysis of 11 studies comprising 8,332 cases and 16,087 controls of European ancestry and 382 cases and 1,476 controls of African American ancestry genotyped with the Illumina HumanExome BeadChip. We used the seqMeta package in R to conduct single variant and gene-based rare variant tests. In the single variant analysis, we limited our analysis to the 64,794 variants with at least 40 minor alleles across studies (minor allele frequency [MAF] ~0.08%). We confirmed associations with previously identified VTE loci, including ABO, F5, F11, and FGA. After adjusting for multiple testing, we observed no novel significant findings in single variant or gene-based analysis. Given our sample size, we had greater than 80% power to detect minimum odds ratios greater than 1.5 and 1.8 for a single variant with MAF of 0.01 and 0.005, respectively. Larger studies and sequence data may be needed to identify novel low-frequency and rare variants associated with VTE risk.


Assuntos
Exoma/genética , Estudo de Associação Genômica Ampla/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Análise em Microsséries/métodos , Tromboembolia Venosa/genética , Afro-Americanos/genética , Alelos , Estudos de Casos e Controles , Feminino , Frequência do Gene , Predisposição Genética para Doença , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Sequenciamento de Nucleotídeos em Larga Escala/estatística & dados numéricos , Humanos , Masculino , Análise em Microsséries/estatística & dados numéricos , Razão de Chances , Polimorfismo de Nucleotídeo Único , Tamanho da Amostra , Tromboembolia Venosa/etnologia
19.
Circulation ; 139(5): 620-635, 2019 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-30586737

RESUMO

BACKGROUND: Factor VIII (FVIII) and its carrier protein von Willebrand factor (VWF) are associated with risk of arterial and venous thrombosis and with hemorrhagic disorders. We aimed to identify and functionally test novel genetic associations regulating plasma FVIII and VWF. METHODS: We meta-analyzed genome-wide association results from 46 354 individuals of European, African, East Asian, and Hispanic ancestry. All studies performed linear regression analysis using an additive genetic model and associated ≈35 million imputed variants with natural log-transformed phenotype levels. In vitro gene silencing in cultured endothelial cells was performed for candidate genes to provide additional evidence on association and function. Two-sample Mendelian randomization analyses were applied to test the causal role of FVIII and VWF plasma levels on the risk of arterial and venous thrombotic events. RESULTS: We identified 13 novel genome-wide significant ( P≤2.5×10-8) associations, 7 with FVIII levels ( FCHO2/TMEM171/TNPO1, HLA, SOX17/RP1, LINC00583/NFIB, RAB5C-KAT2A, RPL3/TAB1/SYNGR1, and ARSA) and 11 with VWF levels ( PDHB/PXK/KCTD6, SLC39A8, FCHO2/TMEM171/TNPO1, HLA, GIMAP7/GIMAP4, OR13C5/NIPSNAP, DAB2IP, C2CD4B, RAB5C-KAT2A, TAB1/SYNGR1, and ARSA), beyond 10 previously reported associations with these phenotypes. Functional validation provided further evidence of association for all loci on VWF except ARSA and DAB2IP. Mendelian randomization suggested causal effects of plasma FVIII activity levels on venous thrombosis and coronary artery disease risk and plasma VWF levels on ischemic stroke risk. CONCLUSIONS: The meta-analysis identified 13 novel genetic loci regulating FVIII and VWF plasma levels, 10 of which we validated functionally. We provide some evidence for a causal role of these proteins in thrombotic events.

20.
Nat Commun ; 9(1): 4228, 2018 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-30315176

RESUMO

Elevated serum urate levels can cause gout, an excruciating disease with suboptimal treatment. Previous GWAS identified common variants with modest effects on serum urate. Here we report large-scale whole-exome sequencing association studies of serum urate and kidney function among ≤19,517 European ancestry and African-American individuals. We identify aggregate associations of low-frequency damaging variants in the urate transporters SLC22A12 (URAT1; p = 1.3 × 10-56) and SLC2A9 (p = 4.5 × 10-7). Gout risk in rare SLC22A12 variant carriers is halved (OR = 0.5, p = 4.9 × 10-3). Selected rare variants in SLC22A12 are validated in transport studies, confirming three as loss-of-function (R325W, R405C, and T467M) and illustrating the therapeutic potential of the new URAT1-blocker lesinurad. In SLC2A9, mapping of rare variants of large effects onto the predicted protein structure reveals new residues that may affect urate binding. These findings provide new insights into the genetic architecture of serum urate, and highlight molecular targets in SLC22A12 and SLC2A9 for lowering serum urate and preventing gout.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA