Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 153
Filtrar
1.
Front Immunol ; 11: 120, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32117271

RESUMO

The manifestation of brain metastases in patients with advanced melanoma is a common event that limits patient's survival and quality of life. The immunosuppressive properties of the brain parenchyma are very different compared to the rest of the body, making it plausible that the current success of cancer immunotherapies is specifically limited here. In melanoma brain metastases, the reciprocal interplay between immunosuppressive mediators such as indoleamine 2, 3-dioxygenase (IDO) or programmed cell death-ligand 1 (PD-L1) in the context of neoplastic transformation are far from being understood. Therefore, we analyzed the immunoreactive infiltrate (CD45, CD3, CD8, Forkhead box P3 [FoxP3], CD11c, CD23, CD123, CD68, Allograft Inflammatory factor 1[AIF-1]) and PD-L1 with respect to IDO expression and localization in melanoma brain metastases but also in matched metastases at extracranial sites to correlate intra- and interpatient data with therapy response and survival. Comparative tissue analysis identified macrophages/microglia as the major source of IDO expression in melanoma brain metastases. In contrast to the tumor infiltrating lymphocytes, melanoma cells per se exhibited low IDO expression levels paralleled by cell surface presentation of PD-L1 in intracranial metastases. Absolute numbers and pattern of IDO-expressing cells in metastases of the brain correlated with recruitment and localization of CD8+ T cells, implicating dynamic impact on the regulation of T cell function in the brain parenchyma. However, paired analysis of matched intra- and extracranial metastases identified significantly lower fractions of cytotoxic CD8+ T cells in intracranial metastases while all other immune cell populations remain unchanged. In line with the already established clinical benefit for PD-L1 expression in extracranial melanoma metastases, Kaplan-Meier analyses correlated PD-L1 expression in brain metastases with favorable outcome in advanced melanoma patients undergoing immune checkpoint therapy. In summary, our data provide new insights into the landscape of immunosuppressive factors in melanoma brain metastases that may be useful in the implication of novel therapeutic strategies for patients undergoing cancer immunotherapy.

3.
Nat Commun ; 11(1): 733, 2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-32024817

RESUMO

Cancers require telomere maintenance mechanisms for unlimited replicative potential. They achieve this through TERT activation or alternative telomere lengthening associated with ATRX or DAXX loss. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, we dissect whole-genome sequencing data of over 2500 matched tumor-control samples from 36 different tumor types aggregated within the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium to characterize the genomic footprints of these mechanisms. While the telomere content of tumors with ATRX or DAXX mutations (ATRX/DAXXtrunc) is increased, tumors with TERT modifications show a moderate decrease of telomere content. One quarter of all tumor samples contain somatic integrations of telomeric sequences into non-telomeric DNA. This fraction is increased to 80% prevalence in ATRX/DAXXtrunc tumors, which carry an aberrant telomere variant repeat (TVR) distribution as another genomic marker. The latter feature includes enrichment or depletion of the previously undescribed singleton TVRs TTCGGG and TTTGGG, respectively. Our systematic analysis provides new insight into the recurrent genomic alterations associated with telomere maintenance mechanisms in cancer.

4.
J Clin Invest ; 2020 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-32017710

RESUMO

BACKGROUND: Neurofibroma/schwannoma hybrid nerve sheath tumors (N/S HNSTs) are neoplasms associated with larger nerves that occur sporadically and in the context of schwannomatosis or neurofibromatosis type 2 or 1. Clinical management of N/S HNST is challenging, especially for large tumors, and established systemic treatments are lacking. METHODS: We used next-generation sequencing and array-based DNA methylation profiling to determine the clinically actionable genomic and epigenomic landscapes of N/S HNST. RESULTS: Whole-exome sequencing within a precision oncology program identified an activating mutation (p.Asp769Tyr) in the catalytic domain of the ERBB2 receptor tyrosine kinase in a patient with schwannomatosis-associated N/S HNST, and targeted treatment with the small-molecule ERBB inhibitor lapatinib led to prolonged clinical benefit and a lasting radiographic and metabolic response. Analysis of a multicenter validation cohort revealed recurrent ERBB2 mutations (p.Leu755Ser, p.Asp769Tyr, p.Val777Leu) in N/S HNSTs occurring in patients who met diagnostic criteria for sporadic schwannomatosis (3 of 7 patients), but not in N/S HNSTs arising in the context of neurofibromatosis (6 patients) or outside a tumor syndrome (1 patient), and showed that ERBB2-mutant N/S HNSTs cluster in a distinct subgroup of peripheral nerve sheath tumors based on genome-wide DNA methylation patterns. CONCLUSION: These findings uncover a key biological feature of N/S HNST that may have important diagnostic and therapeutic implications. FUNDING: This work was supported by grant H021 from DKFZ-HIPO. MWR and PNH have received fellowships from UCT Frankfurt, and MWR has received funding from the Frankfurt Research Funding Clinician Scientist Program.

5.
Sci Rep ; 10(1): 2849, 2020 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-32071383

RESUMO

Data from several large high-throughput drug response screens have become available to the scientific community recently. Although many efforts have been made to use this information to predict drug sensitivity, our ability to accurately predict drug response based on genetic data remains limited. In order to systematically examine how different aspects of modelling affect the resulting prediction accuracy, we built a range of models for seven drugs (erlotinib, pacliatxel, lapatinib, PLX4720, sorafenib, nutlin-3 and nilotinib) using data from the largest available cell line and xenograft drug sensitivity screens. We found that the drug response metric, the choice of the molecular data type and the number of training samples have a substantial impact on prediction accuracy. We also compared the tasks of drug response prediction with tissue type prediction and found that, unlike for drug response, tissue type can be predicted with high accuracy. Furthermore, we assessed our ability to predict drug response in four xenograft cohorts (treated either with erlotinib, gemcitabine or paclitaxel) using models trained on cell line data. We could predict response in an erlotinib-treated cohort with a moderate accuracy (correlation ≈ 0.5), but were unable to correctly predict responses in cohorts treated with gemcitabine or paclitaxel.

6.
Biol Open ; 2020 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-31988093

RESUMO

Epigenomic regulation plays a vital role in cell differentiation. The leukemic HL-60/S4 promyelocytic cell can be easily differentiated from its undifferentiated promyelocyte state into neutrophil- and macrophage-like cell states. In this study, we present the underlying genome and epigenome architecture of HL-60/S4 through its differentiation.We performed whole genome bisulphite sequencing of HL-60/S4 cells and their differentiated counterparts. With the support of karyotyping, we show that HL-60/S4 maintains a stable genome throughout differentiation. Analysis of differential CpG methylation reveals that most methylation changes occur in the macrophage-like state. Differential methylation of promoters was associated with immune related terms. Key immune genes, CEBPA, GFI1, MAFB and GATA1 showed differential expression and methylation. However, we observed strongest enrichment of methylation changes in enhancers and CTCF binding sites, implying that methylation plays a major role in large scale transcriptional reprogramming and chromatin reorganisation during differentiation. Correlation of differential expression and distal methylation with support from chromatin capture experiments allowed us to identify putative proximal and long-range enhancers for a number of immune cell differentiation genes, including CEBPA and CCNF. Integrating expression data, we present a model of HL-60/S4 differentiation in relation to the wider scope of myeloid differentiation.

7.
Immunity ; 52(2): 295-312.e11, 2020 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-31924477

RESUMO

Specialized regulatory T (Treg) cells accumulate and perform homeostatic and regenerative functions in nonlymphoid tissues. Whether common precursors for nonlymphoid-tissue Treg cells exist and how they differentiate remain elusive. Using transcription factor nuclear factor, interleukin 3 regulated (Nfil3) reporter mice and single-cell RNA-sequencing (scRNA-seq), we identified two precursor stages of interleukin 33 (IL-33) receptor ST2-expressing nonlymphoid tissue Treg cells, which resided in the spleen and lymph nodes. Global chromatin profiling of nonlymphoid tissue Treg cells and the two precursor stages revealed a stepwise acquisition of chromatin accessibility and reprogramming toward the nonlymphoid-tissue Treg cell phenotype. Mechanistically, we identified and validated the transcription factor Batf as the driver of the molecular tissue program in the precursors. Understanding this tissue development program will help to harness regenerative properties of tissue Treg cells for therapy.

8.
Oncogene ; 39(4): 814-832, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31558800

RESUMO

Fusion proteins involving the BRAF serine/threonine kinase occur in many cancers. The oncogenic potential of BRAF fusions has been attributed to the loss of critical N-terminal domains that mediate BRAF autoinhibition. We used whole-exome and RNA sequencing in a patient with glioblastoma multiforme to identify a rearrangement between TTYH3, encoding a membrane-resident, calcium-activated chloride channel, and BRAF intron 1, resulting in a TTYH3-BRAF fusion protein that retained all features essential for BRAF autoinhibition. Accordingly, the BRAF moiety of the fusion protein alone, which represents full-length BRAF without the amino acids encoded by exon 1 (BRAFΔE1), did not induce MEK/ERK phosphorylation or transformation. Likewise, neither the TTYH3 moiety of the fusion protein nor full-length TTYH3 provoked ERK pathway activity or transformation. In contrast, TTYH3-BRAF displayed increased MEK phosphorylation potential and transforming activity, which were caused by TTYH3-mediated tethering of near-full-length BRAF to the (endo)membrane system. Consistent with this mechanism, a synthetic approach, in which BRAFΔE1 was tethered to the membrane by fusing it to the cytoplasmic tail of CD8 also induced transformation. Furthermore, we demonstrate that TTYH3-BRAF signals largely independent of a functional RAS binding domain, but requires an intact BRAF dimer interface and activation loop phosphorylation sites. Cells expressing TTYH3-BRAF exhibited increased MEK/ERK signaling, which was blocked by clinically achievable concentrations of sorafenib, trametinib, and the paradox breaker PLX8394. These data provide the first example of a fully autoinhibited BRAF protein whose oncogenic potential is dictated by a distinct fusion partner and not by a structural change in BRAF itself.

10.
ESMO Open ; 4(6): e000583, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31798980

RESUMO

Objective: Measuring the success of molecularly guided therapies is a major challenge in precision oncology trials. A commonly used endpoint is an intra-patient progression-free survival (PFS) ratio, defined as the PFS interval associated with molecularly guided therapy (PFS2) divided by the PFS interval associated with the last prior systemic therapy (PFS1), above 1.3 or, in some studies, above 1.33 or 1.5. Methods: To investigate if the concept of PFS ratios is in agreement with actual response evaluations by physicians, we conducted a survey among members of the MASTER (Molecularly Aided Stratification for Tumor Eradication Research) Programme of the German Cancer Consortium who were asked to classify the success of molecularly guided therapies in 194 patients enrolled in the MOSCATO 01 trial based on PFS1 and PFS2 times. Results: A comparison of classification profiles revealed three distinct clusters of PFS benefit assessments. Only 29% of assessments were consistent with a PFS ratio threshold of 1.3, whereas the remaining 71% of participants applied a different classification scheme that did not rely on the relation between PFS times alone, but also took into account absolute PFS1 intervals. Based on these community-driven insights, we developed a modified PFS ratio that incorporates the influence of absolute PFS1 intervals on the judgement of clinical benefit by physicians. Application of the modified PFS ratio to outcome data from two recent precision oncology trials, MOSCATO 01 and WINTHER, revealed significantly improved concordance with physician-perceived clinical benefit and identified comparable proportions of patients who benefited from molecularly guided therapies. Conclusions: The modified PFS ratio may represent a meaningful clinical endpoint that could aid in the design and interpretation of future precision oncology trials.

11.
Bioinform Biol Insights ; 13: 1177932219865533, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31391779

RESUMO

Plasmodium falciparum adenylosuccinate lyase (PfADSL) is an important enzyme in purine metabolism. Although several benzimidazole derivatives have been commercially developed into drugs, the template design as inhibitor against PfADSL has not been fully explored. This study aims to model the 3-dimensional (3D) structure of PfADSL, design and predict in silico absorption, distribution, metabolism, excretion and toxicity (ADMET) of 8 substituted benzo[d]imidazol-1-yl)methyl)benzimidamide compounds as well as predict the potential interaction modes and binding affinities of the designed ligands with the modelled PfADSL. PfADSL 3D structure was modelled using SWISS-MODEL, whereas the compounds were designed using ChemDraw Professional. ADMET predictions were done using OSIRIS Property Explorer and Swiss ADME, whereas molecular docking was done with AutoDock Tools. All designed compounds exhibited good in silico ADMET properties, hence can be considered safe for drug development. Binding energies ranged from -6.85 to -8.75 kcal/mol. Thus, they could be further synthesised and developed into active commercial antimalarial drugs.

12.
Mol Cancer Ther ; 18(11): 1985-1996, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31308077

RESUMO

Sporadic gastrointestinal stromal tumors (GIST), characterized by activating mutations of KIT or PDGFRA, favorably respond to KIT inhibitory treatment but eventually become resistant. The development of effective salvage treatments is complicated by the heterogeneity of KIT secondary resistance mutations. Recently, additional mutations that independently activate KIT-downstream signaling have been found in pretreated patients-adding further complexity to the scope of resistance. We collected genotyping data for KIT from tumor samples of pretreated GIST, providing a representative overview on the distribution and incidence of secondary KIT mutations (n = 80). Analyzing next-generation sequencing data of 109 GIST, we found that 18% carried mutations in KIT-downstream signaling intermediates (NF1/2, PTEN, RAS, PIK3CA, TSC1/2, AKT, BRAF) potentially mediating resistance to KIT inhibitors. Notably, we found no apparent other driver mutations in refractory cases that were analyzed by whole exome/genome sequencing (13/109). Using CRISPR/Cas9 methods, we generated a panel of GIST cell lines harboring mutations in KIT, PTEN, KRAS, NF1, and TSC2 We utilized this panel to evaluate sapanisertib, a novel mTOR kinase inhibitor, as a salvage strategy. Sapanisertib had potent antiproliferative effects in all cell lines, including those with KIT-downstream mutations. Combinations with KIT or MEK inhibitors completely abrogated GIST-survival signaling and displayed synergistic effects. Our isogenic cell line panel closely approximates the genetic heterogeneity of resistance observed in heavily pretreated patients with GIST. With the clinical development of novel, broad spectrum KIT inhibitors, emergence of non-KIT-related resistance may require combination treatments with inhibitors of KIT-downstream signaling such as mTOR or MEK.

13.
Mol Syst Biol ; 15(5): e8339, 2019 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-31118277

RESUMO

In chronic lymphocytic leukemia (CLL), a diverse set of genetic mutations is embedded in a deregulated epigenetic landscape that drives cancerogenesis. To elucidate the role of aberrant chromatin features, we mapped DNA methylation, seven histone modifications, nucleosome positions, chromatin accessibility, binding of EBF1 and CTCF, as well as the transcriptome of B cells from CLL patients and healthy donors. A globally increased histone deacetylase activity was detected and half of the genome comprised transcriptionally downregulated partially DNA methylated domains demarcated by CTCF CLL samples displayed a H3K4me3 redistribution and nucleosome gain at promoters as well as changes of enhancer activity and enhancer linkage to target genes. A DNA binding motif analysis identified transcription factors that gained or lost binding in CLL at sites with aberrant chromatin features. These findings were integrated into a gene regulatory enhancer containing network enriched for B-cell receptor signaling pathway components. Our study predicts novel molecular links to targets of CLL therapies and provides a valuable resource for further studies on the epigenetic contribution to the disease.

14.
Metabolomics ; 15(5): 78, 2019 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-31087206

RESUMO

INTRODUCTION: Translational cancer research has seen an increasing interest in metabolomic profiling to decipher tumor phenotypes. However, the impact of post-surgical freezing delays on mass spectrometric metabolomic measurements of the cancer tissue remains elusive. OBJECTIVES: To evaluate the impact of post-surgical freezing delays on cancer tissue metabolomics and to investigate changes per metabolite and per metabolic pathway. METHODS: We performed untargeted metabolomics on three cortically located and bulk-resected glioblastoma tissues that were sequentially frozen as duplicates at up to six different time delays (0-180 min, 34 samples). RESULTS: Statistical modelling revealed that 10% of the metabolome (59 of 597 metabolites) changed significantly after a 3 h delay. While carbohydrates and energy metabolites decreased, peptides and lipids increased. After a 2 h delay, these metabolites had changed by as much as 50-100%. We present the first list of metabolites in glioblastoma tissues that are sensitive to post-surgical freezing delays and offer the opportunity to define individualized fold change thresholds for future comparative metabolomic studies. CONCLUSION: More researchers should take these pre-analytical factors into consideration when analyzing metabolomic data. We present a strategy for how to work with metabolites that are sensitive to freezing delays.

15.
BMC Bioinformatics ; 20(1): 272, 2019 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-31138115

RESUMO

BACKGROUND: Establishment of telomere maintenance mechanisms is a universal step in tumor development to achieve replicative immortality. These processes leave molecular footprints in cancer genomes in the form of altered telomere content and aberrations in telomere composition. To retrieve these telomere characteristics from high-throughput sequencing data the available computational approaches need to be extended and optimized to fully exploit the information provided by large scale cancer genome data sets. RESULTS: We here present TelomereHunter, a software for the detailed characterization of telomere maintenance mechanism footprints in the genome. The tool is implemented for the analysis of large cancer genome cohorts and provides a variety of diagnostic diagrams as well as machine-readable output for subsequent analysis. A novel key feature is the extraction of singleton telomere variant repeats, which improves the identification and subclassification of the alternative lengthening of telomeres phenotype. We find that whole genome sequencing-derived telomere content estimates strongly correlate with telomere qPCR measurements (r = 0.94). For the first time, we determine the correlation of in silico telomere content quantification from whole genome sequencing and whole genome bisulfite sequencing data derived from the same tumor sample (r = 0.78). An analogous comparison of whole exome sequencing data and whole genome sequencing data measured slightly lower correlation (r = 0.79). However, this is considerably improved by normalization with matched controls (r = 0.91). CONCLUSIONS: TelomereHunter provides new functionality for the analysis of the footprints of telomere maintenance mechanisms in cancer genomes. Besides whole genome sequencing, whole exome sequencing and whole genome bisulfite sequencing are suited for in silico telomere content quantification, especially if matched control samples are available. The software runs under a GPL license and is available at https://www.dkfz.de/en/applied-bioinformatics/telomerehunter/telomerehunter.html .


Assuntos
Simulação por Computador , Genoma , Neoplasias/genética , Software , Telômero/genética , Sequência de Bases , Glioblastoma/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Meduloblastoma/genética , Sequenciamento Completo do Exoma , Sequenciamento Completo do Genoma
16.
Int J Cancer ; 145(11): 2996-3010, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31008532

RESUMO

Next-generation sequencing has become a cornerstone of therapy guidance in cancer precision medicine and an indispensable research tool in translational oncology. Its rapidly increasing use during the last decade has expanded the options for targeted tumor therapies, and molecular tumor boards have grown accordingly. However, with increasing detection of genetic alterations, their interpretation has become more complex and error-prone, potentially introducing biases and reducing benefits in clinical practice. To facilitate interdisciplinary discussions of genetic alterations for treatment stratification between pathologists, oncologists, bioinformaticians, genetic counselors and medical scientists in specialized molecular tumor boards, several systems for the classification of variants detected by large-scale sequencing have been proposed. We review three recent and commonly applied classifications and discuss their individual strengths and weaknesses. Comparison of the classifications underlines the need for a clinically useful and universally applicable variant reporting system, which will be instrumental for efficient decision making based on sequencing analysis in oncology. Integrating these data, we propose a generalizable classification concept featuring a conservative and a more progressive scheme, which can be readily applied in a clinical setting.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Neoplasias/genética , Humanos , Terapia de Alvo Molecular , Mutação , Neoplasias/tratamento farmacológico , Medicina de Precisão , Análise de Sequência de DNA
17.
Cancer Res ; 79(12): 3125-3138, 2019 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-31000522

RESUMO

Oncogenic MYC activation promotes proliferation in Burkitt lymphoma, but also induces cell-cycle arrest and apoptosis mediated by p53, a tumor suppressor that is mutated in 40% of Burkitt lymphoma cases. To identify molecular dependencies in Burkitt lymphoma, we performed RNAi-based, loss-of-function screening in eight Burkitt lymphoma cell lines and integrated non-Burkitt lymphoma RNAi screens and genetic data. We identified 76 genes essential to Burkitt lymphoma, including genes associated with hematopoietic cell differentiation (FLI1, BCL11A) or B-cell development and activation (PAX5, CDKN1B, JAK2, CARD11) and found a number of context-specific dependencies including oncogene addiction in cell lines with TCF3/ID3 or MYD88 mutation. The strongest genotype-phenotype association was seen for TP53. MDM4, a negative regulator of TP53, was essential in TP53 wild-type (TP53wt) Burkitt lymphoma cell lines. MDM4 knockdown activated p53, induced cell-cycle arrest, and decreased tumor growth in a xenograft model in a p53-dependent manner. Small molecule inhibition of the MDM4-p53 interaction was effective only in TP53wt Burkitt lymphoma cell lines. Moreover, primary TP53wt Burkitt lymphoma samples frequently acquired gains of chromosome 1q, which includes the MDM4 locus, and showed elevated MDM4 mRNA levels. 1q gain was associated with TP53wt across 789 cancer cell lines and MDM4 was essential in the TP53wt-context in 216 cell lines representing 19 cancer entities from the Achilles Project. Our findings highlight the critical role of p53 as a tumor suppressor in Burkitt lymphoma and identify MDM4 as a functional target of 1q gain in a wide range of cancers that is therapeutically targetable. SIGNIFICANCE: Targeting MDM4 to alleviate degradation of p53 can be exploited therapeutically across Burkitt lymphoma and other cancers with wild-type p53 harboring 1q gain, the most frequent copy number alteration in cancer.

18.
Nat Commun ; 10(1): 1635, 2019 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-30967556

RESUMO

Chordomas are rare bone tumors with few therapeutic options. Here we show, using whole-exome and genome sequencing within a precision oncology program, that advanced chordomas (n = 11) may be characterized by genomic patterns indicative of defective homologous recombination (HR) DNA repair and alterations affecting HR-related genes, including, for example, deletions and pathogenic germline variants of BRCA2, NBN, and CHEK2. A mutational signature associated with HR deficiency was significantly enriched in 72.7% of samples and co-occurred with genomic instability. The poly(ADP-ribose) polymerase (PARP) inhibitor olaparib, which is preferentially toxic to HR-incompetent cells, led to prolonged clinical benefit in a patient with refractory chordoma, and whole-genome analysis at progression revealed a PARP1 p.T910A mutation predicted to disrupt the autoinhibitory PARP1 helical domain. These findings uncover a therapeutic opportunity in chordoma that warrants further exploration, and provide insight into the mechanisms underlying PARP inhibitor resistance.


Assuntos
Cordoma/tratamento farmacológico , Ftalazinas/uso terapêutico , Piperazinas/uso terapêutico , Poli(ADP-Ribose) Polimerase-1/genética , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Reparo de DNA por Recombinação/genética , Adulto , Idoso , Cordoma/genética , Cordoma/patologia , Mapeamento Cromossômico , Quebras de DNA de Cadeia Dupla , Análise Mutacional de DNA , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Instabilidade Genômica , Humanos , Masculino , Pessoa de Meia-Idade , Ftalazinas/farmacologia , Piperazinas/farmacologia , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Medicina de Precisão/métodos , Domínios Proteicos/genética , Resultado do Tratamento , Sequenciamento Completo do Exoma
19.
Nat Commun ; 10(1): 1459, 2019 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-30926794

RESUMO

Burkitt lymphoma (BL) is the most common B-cell lymphoma in children. Within the International Cancer Genome Consortium (ICGC), we performed whole genome and transcriptome sequencing of 39 sporadic BL. Here, we unravel interaction of structural, mutational, and transcriptional changes, which contribute to MYC oncogene dysregulation together with the pathognomonic IG-MYC translocation. Moreover, by mapping IGH translocation breakpoints, we provide evidence that the precursor of at least a subset of BL is a B-cell poised to express IGHA. We describe the landscape of mutations, structural variants, and mutational processes, and identified a series of driver genes in the pathogenesis of BL, which can be targeted by various mechanisms, including IG-non MYC translocations, germline and somatic mutations, fusion transcripts, and alternative splicing.


Assuntos
Linfoma de Burkitt/genética , Genoma Humano , Transcriptoma/genética , Adolescente , Processamento Alternativo/genética , Sequência de Aminoácidos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/química , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Criança , Pré-Escolar , Pontos de Quebra do Cromossomo , Estudos de Coortes , Metilação de DNA/genética , Análise Mutacional de DNA , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Mutação INDEL/genética , Masculino , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Fases de Leitura Aberta/genética , Polimorfismo de Nucleotídeo Único/genética , Proteínas Proto-Oncogênicas c-myc/genética , Translocação Genética , Sequenciamento Completo do Genoma
20.
Artigo em Inglês | MEDLINE | ID: mdl-30833416

RESUMO

Prostate cancers harboring DNA repair gene alterations are particularly sensitive to PARP inhibitor treatment. We report a case of an advanced prostate cancer patient profiled within the NCT-MASTER (Molecularly Aided Stratification for Tumor Eradication Research) precision oncology program using next-generation sequencing. Comprehensive genomic and transcriptomic analysis identified a pathogenic germline PALB2 variant as well as a mutational signature associated with disturbed homologous recombination together with structural genomic rearrangements. A molecular tumor board identified a potential benefit of targeted therapy and recommended PARP inhibition and platinum-based chemotherapy. Single-agent treatment with the PARP inhibitor olaparib as well as subsequent combination with platinum-based chemotherapy resulted in disease stabilization and substantial improvement of clinical symptoms. Upon progression, we performed whole-exome and RNA sequencing of a liver metastasis, which demonstrated up-regulation of several genes characteristic for the neuroendocrine prostate cancer phenotype as well as a novel translocation resulting in an in-frame, loss-of-function fusion of RB1. We suggest that multidimensional genomic characterization of prostate cancer patients undergoing PARP inhibitor therapy will be necessary to capture and understand predictive biomarkers of PARP inhibitor sensitivity and resistance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA