Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Mais filtros

Base de dados
Intervalo de ano de publicação
Environ Pollut ; 258: 113476, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31902537


Exposure to chemicals produced by petrochemical industrial complexes (PICs), such as benzene, ionizing radiation, and particulate matters, may contribute to the development of leukemia. However, epidemiological studies showed controversial results. This systematic review and meta-analysis aimed to summarize the association between residential exposure to PICs and the risk of leukemia incidence, focusing on exposure-response effects. We searched PubMed, Embase, Web of Science, and Cochrane Library databases for studies published before September 1st, 2019. Observational studies investigating residential exposure to PICs and the risk of leukemia were included. The outcome of interest was the incidence of leukemia comparing to reference groups. Relative risk (RR) was used as the summary effect measure, synthesized by characteristics of populations, distance to PICs, and calendar time in meta-regression. We identified 7 observational studies, including 2322 leukemia cases and substantial reference groups, in this meta-analysis. Residential exposure to PICs within a maximal 8-km distance had a 36% increased risk of leukemia (pooled RR = 1.36, 95% CI = 1.14-1.62) compared to controls, regardless of sex and age. In terms of leukemia subtypes, residential exposure to PICs was associated with the risks of acute myeloid leukemia (AML, pooled RR = 1.61, 95% CI = 1.12-2.31) and chronic lymphocytic leukemia (CLL, pooled RR = 1.85, 95% CI = 1.11-6.42). In meta-regression, the positive association occurred after 10 years of follow-up with a pooled RRs of 1.21 (95% CI = 1.02-1.44) and then slightly increased to 1.77 (95% CI = 1.35-2.33) at 30 years after follow-up. No effect modification was found by sex, age, and geographic locations.

Poluentes Atmosféricos/efeitos adversos , Benzeno/toxicidade , Exposição Ambiental/efeitos adversos , Leucemia/induzido quimicamente , Petróleo/toxicidade , Benzeno/efeitos adversos , Indústria Química , Humanos , Incidência , Leucemia/epidemiologia , Petróleo/efeitos adversos , Risco
Neuron ; 102(1): 232-248.e11, 2019 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-30772081


Navigation engages many cortical areas, including visual, parietal, and retrosplenial cortices. These regions have been mapped anatomically and with sensory stimuli and studied individually during behavior. Here, we investigated how behaviorally driven neural activity is distributed and combined across these regions. We performed dense sampling of single-neuron activity across the mouse posterior cortex and developed unbiased methods to relate neural activity to behavior and anatomical space. Most parts of the posterior cortex encoded most behavior-related features. However, the relative strength with which features were encoded varied across space. Therefore, the posterior cortex could be divided into discriminable areas based solely on behaviorally relevant neural activity, revealing functional structure in association regions. Multimodal representations combining sensory and movement signals were strongest in posterior parietal cortex, where gradients of single-feature representations spatially overlapped. We propose that encoding of behavioral features is not constrained by retinotopic borders and instead varies smoothly over space within association regions.

Locomoção/fisiologia , Inibição Neural/fisiologia , Lobo Parietal/fisiologia , Navegação Espacial/fisiologia , Córtex Visual/fisiologia , Animais , Comportamento Animal , Camundongos , Optogenética