Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Mais filtros

Base de dados
Intervalo de ano de publicação
Macromol Rapid Commun ; 39(4)2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29210493


Silicone elastomers have broad versatility within a variety of potential advanced materials applications, such as soft robotics, biomedical devices, and metamaterials. A series of custom 3D printable silicone inks with tunable stiffness is developed, formulated, and characterized. The silicone inks exhibit excellent rheological behavior for 3D printing, as observed from the printing of porous structures with controlled architectures. Herein, the capability to tune the stiffness of printable silicone materials via careful control over the chemistry, network formation, and crosslink density of the ink formulations in order to overcome the challenging interplay between ink development, post-processing, material properties, and performance is demonstrated.

Materiais Biocompatíveis/química , Elastômeros/química , Silicones/química , Materiais Biocompatíveis/síntese química , Elastômeros/síntese química , Tinta , Porosidade , Impressão Tridimensional , Reologia , Silicones/síntese química
Sci Rep ; 7(1): 4664, 2017 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-28680078


Direct ink writing enables the layer-by-layer manufacture of ordered, porous structures whose mechanical behavior is driven by architecture and material properties. Here, we incorporate two different gas filled microsphere pore formers to evaluate the effect of shell stiffness and Tg on compressive behavior and compression set in siloxane matrix printed structures. The lower Tg microsphere structures exhibit substantial compression set when heated near and above Tg, with full structural recovery upon reheating without constraint. By contrast, the higher Tg microsphere structures exhibit reduced compression set with no recovery upon reheating. Aside from their role in tuning the mechanical behavior of direct ink write structures, polymer microspheres are good candidates for shape memory elastomers requiring structural complexity, with potential applications toward tandem shape memory polymers.