Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 137
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Vet Microbiol ; 241: 108549, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31928698

RESUMO

Nipah virus (NiV) is a re-emerging zoonotic pathogen that causes high mortality in humans and pigs. Oral immunization in free-roaming animals is one of the most practical approaches to prevent NiV pandemics. We previously generated a recombinant rabies viruses (RABV) Evelyn-Rokitnicki-Abelseth (ERA) strain, rERAG333E, which contains a mutation from arginine to glutamic acid at residue 333 of glycoprotein (G333E) and serves as an oral vaccine for dog rabies. In this study, we generated two recombinant RABVs, rERAG333E/NiVG and rERAG333E/NiVF, expressing the NiV Malaysian strain attachment glycoprotein (NiV-G) or fusion glycoprotein (NiV-F) gene based on the rERAG333E vector platform. Both rERAG333E/NiVG and rERAG333E/NiVF displayed growth properties similar to those of rERAG333E and caused marked syncytia formation after co-infection in BSR cell culture. Adult and suckling mice intracerebrally inoculated with the recombinant RABVs showed NiV-G and NiV-F expression did not increase the virulence of rERAG333E. Oral vaccination with rERAG333E/NiVG either singularly or combined with rERAG333E/NiVF induced significant NiV neutralizing antibody against NiV and RABV, and IgG to NiV-G or NiV-F in mice and pigs. rERAG333E/NiVG and rERAG333E/NiVF thus appeared to be suitable candidates for further oral vaccines for potential animal targets in endemic areas of NiV disease and rabies.

3.
J Virol ; 94(2)2020 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-31666383

RESUMO

Rabies virus (RABV) is a widespread pathogen that causes fatal disease in humans and animals. It has been suggested that multiple host factors are involved in RABV host entry. Here, we showed that RABV uses integrin ß1 (ITGB1) for cellular entry. RABV infection was drastically decreased after ITGB1 short interfering RNA knockdown and moderately increased after ITGB1 overexpression in cells. ITGB1 directly interacts with RABV glycoprotein. Upon infection, ITGB1 is internalized into cells and transported to late endosomes together with RABV. The infectivity of cell-adapted RABV in cells and street RABV in mice was neutralized by ITGB1 ectodomain soluble protein. The role of ITGB1 in RABV infection depends on interaction with fibronectin in cells and mice. We found that Arg-Gly-Asp (RGD) peptide and antibody to ITGB1 significantly blocked RABV infection in cells in vitro and street RABV infection in mice via intramuscular inoculation but not the intracerebral route. ITGB1 also interacts with nicotinic acetylcholine receptor, which is the proposed receptor for peripheral RABV infection. Our findings suggest that ITGB1 is a key cellular factor for RABV peripheral entry and is a potential therapeutic target for postexposure treatment against rabies.IMPORTANCE Rabies is a severe zoonotic disease caused by rabies virus (RABV). However, the nature of RABV entry remains unclear, which has hindered the development of therapy for rabies. It is suggested that modulations of RABV glycoprotein and multiple host factors are responsible for RABV invasion. Here, we showed that integrin ß1 (ITGB1) directly interacts with RABV glycoprotein, and both proteins are internalized together into host cells. Differential expression of ITGB1 in mature muscle and cerebral cortex of mice led to A-4 (ITGB1-specific antibody), and RGD peptide (competitive inhibitor for interaction between ITGB1 and fibronectin) blocked street RABV infection via intramuscular but not intracerebral inoculation in mice, suggesting that ITGB1 plays a role in RABV peripheral entry. Our study revealed this distinct cellular factor in RABV infection, which may be an attractive target for therapeutic intervention.

4.
J Virol ; 94(2)2020 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-31694949

RESUMO

Influenza A virus (IAV) coopts numerous host factors to complete its replication cycle. Here, we identify free fatty acid receptor 2 (FFAR2) as a cofactor for IAV entry into host cells. We found that downregulation of FFAR2 or Ffar2 expression significantly reduced the replication of IAV in A549 or RAW 264.7 cells. The treatment of A549 cells with small interfering RNA (siRNA) targeting FFAR2 or the FFAR2 pathway agonists 2-(4-chlorophenyl)-3-methyl-N-(thiazol-2-yl)butanamide (4-CMTB) and compound 58 (Cmp58) [(S)-2-(4-chlorophenyl)-3,3-dimethyl-N-(5-phenylthiazol-2-yl)butanamide] dramatically inhibited the nuclear accumulation of viral nucleoprotein (NP) at early time points postinfection, indicating that FFAR2 functions in the early stage of the IAV replication cycle. FFAR2 downregulation had no effect on the expression of sialic acid (SA) receptors on the cell membrane, the attachment of IAV to the SA receptors, or the activity of the viral ribonucleoprotein (vRNP) complex. Rather, the amount of internalized IAVs was significantly reduced in FFAR2-knocked-down or 4-CMTB- or Cmp58-treated A549 cells. Further studies showed that FFAR2 associated with ß-arrestin1 and that ß-arrestin1 interacted with the ß2-subunit of the AP-2 complex (AP2B1), the essential adaptor of the clathrin-mediated endocytosis pathway. Notably, siRNA knockdown of either ß-arrestin1 or AP2B1 dramatically impaired IAV replication, and AP2B1 knockdown or treatment with Barbadin, an inhibitor targeting the ß-arrestin1/AP2B1 complex, remarkably decreased the amount of internalized IAVs. Moreover, we found that FFAR2 interacted with three G protein-coupled receptor (GPCR) kinases (i.e., GRK2, GRK5, and GRK6) whose downregulation inhibited IAV replication. Together, our findings demonstrate that the FFAR2 signaling cascade is important for the efficient endocytosis of IAV into host cells.IMPORTANCE To complete its replication cycle, IAV hijacks the host endocytosis machinery to invade cells. However, the underlying mechanisms of how IAV is internalized into host cells remain poorly understood, emphasizing the need to elucidate the role of host factors in IAV entry into cells. In this study, we identified FFAR2 as an important host factor for the efficient replication of both low-pathogenic and highly pathogenic IAV. We revealed that FFAR2 facilitates the internalization of IAV into target cells during the early stage of infection. Upon further characterization of the role of FFAR2-associated proteins in virus replication, we found that the FFAR2-ß-arrestin1-AP2B1 signaling cascade is important for the efficient endocytosis of IAV. Our findings thus further our understanding of the biological details of IAV entry into host cells and establish FFAR2 as a potential target for antiviral drug development.

5.
Virol J ; 16(1): 151, 2019 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-31805959

RESUMO

BACKGROUND: Bluetongue virus (BTV), an emerging insect vector mediated pathogen affecting both wild ruminants and livestock, has a genome consisting of 10 linear double-stranded RNA genome segments. BTV has a severe economic impact on agriculture in many parts of the world. Current reverse genetics (RG) strategy to rescue BTV mainly rely on in vitro synthesis of RNA transcripts from cloned complimentary DNA (cDNA) corresponding to viral genome segments with the aid of helper plasmids. RNA synthesis is a laborious job which is further complicated with a need for expensive reagents and a meticulous operational procedure. Additionally, the target genes must be cloned into a specific vector to prepare templates for RNA transcription. RESULT: In this study, we have developed a PCR based BTV RG system with easy two-step transfection. Viable viruses were recovered following a first transfection with the seven helper plasmids and a second transfection with the 10 PCR products on the BSR cells. Further, recovered viruses were characterized with indirect immunofluorescence assays (IFA) and gene sequencing. And the proliferation properties of these viruses were also compared with wild type BTV. Interestingly, we have identified that viruses containing the segment 2 of the genome from reassortant BTV, grew slightly slower than the others. CONCLUSION: In this study, a convenient PCR based RG platform for BTV is established, and this strategy could be an effective alternative to the original available BTV rescue methods. Furthermore, this RG strategy is likely applicable for other Orbiviruses.

6.
Vet Microbiol ; 239: 108490, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31767075

RESUMO

Highly pathogenic porcine reproductive and respiratory syndrome (HP-PRRS) poses a significant threat to the pig industry, for which vaccination is considered to be an effective means of prevention and control. Here, we developed two recombinant Newcastle disease virus (NDV) LaSota-vectored PRRS candidate vaccines, rLaSota-GP5 and rLaSota-GP3-GP5, using reverse genetic techniques. The two recombinant viruses exhibited a high degree of genetic stability after 10 successive generations in chicken embryos. There was no significant difference in pathogenicity compared with the rLaSota parent strain in poultry, mice and pigs. The recombinant viruses could not be detected in the feeding environment of immunized pigs, but could be detected in the organs and tissues of pigs for no more than 10 days after immunization. Importantly, in contrast to rLaSota-GP5, rLaSota-GP3-GP5 elicited both significant humoral and cellular immune responses in pigs. In particular, the neutralizing antibody titer in the rLaSota-GP3-GP5 group was 1.51 times significantly higher than that of the commercial vaccine group at 42 days post-immunization. At the same time, there was significant difference in the level of IFN-γ between the rLaSota-GP3-GP5 group and the commercial vaccine group. Furthermore, the viral load in the organs and tissues of rLaSota-GP3-GP5-immunized pigs was substantially lower than that of unimmunized pigs after being challenged with HP-PRRS virus GD strain. These results suggest that rLaSota-GP3-GP5 is a safe and promising candidate vaccine, and there is potential for further development of a recombinant virus vaccine for PRRS using NDV.

7.
Science ; 366(6465): 640-644, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31624094

RESUMO

African swine fever virus (ASFV) is a giant and complex DNA virus that causes a highly contagious and often lethal swine disease for which no vaccine is available. Using an optimized image reconstruction strategy, we solved the ASFV capsid structure up to 4.1 angstroms, which is built from 17,280 proteins, including one major (p72) and four minor (M1249L, p17, p49, and H240R) capsid proteins organized into pentasymmetrons and trisymmetrons. The atomic structure of the p72 protein informs putative conformational epitopes, distinguishing ASFV from other nucleocytoplasmic large DNA viruses. The minor capsid proteins form a complicated network below the outer capsid shell, stabilizing the capsid by holding adjacent capsomers together. Acting as core organizers, 100-nanometer-long M1249L proteins run along each edge of the trisymmetrons that bridge two neighboring pentasymmetrons and form extensive intermolecular networks with other capsid proteins, driving the formation of the capsid framework. These structural details unveil the basis of capsid stability and assembly, opening up new avenues for African swine fever vaccine development.

8.
mBio ; 10(3)2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31213560

RESUMO

Avian influenza viruses (AIVs) must acquire mammalian-adaptive mutations before they can efficiently replicate in and transmit among humans. The PB2 E627K mutation is known to play a prominent role in the mammalian adaptation of AIVs. The H7N9 AIVs that emerged in 2013 in China easily acquired the PB2 E627K mutation upon replication in humans. Here, we generate a series of reassortant or mutant H7N9 AIVs and test them in mice. We show that the low polymerase activity attributed to the viral PA protein is the intrinsic driving force behind the emergence of PB2 E627K during H7N9 AIV replication in mice. Four residues in the N-terminal region of PA are critical in mediating the PB2 E627K acquisition. Notably, due to the identity of viral PA protein, the polymerase activity and growth of H7N9 AIV are highly sensitive to changes in expression levels of human ANP32A protein. Furthermore, the impaired viral polymerase activity of H7N9 AIV caused by the depletion of ANP32A led to reduced virus replication in Anp32a-/- mice, abolishing the acquisition of the PB2 E627K mutation and instead driving the virus to acquire the alternative PB2 D701N mutation. Taken together, our findings show that the emergence of the PB2 E627K mutation of H7N9 AIV is driven by the intrinsic low polymerase activity conferred by the viral PA protein, which also involves the engagement of mammalian ANP32A.IMPORTANCE The emergence of the PB2 E627K substitution is critical in the mammalian adaptation and pathogenesis of AIV. H7N9 AIVs that emerged in 2013 possess a prominent ability in gaining the PB2 E627K mutation in humans. Here, we demonstrate that the acquisition of the H7N9 PB2 E627K mutation is driven by the low polymerase activity conferred by the viral PA protein in human cells, and four PA residues are collectively involved in this process. Notably, the H7N9 PA protein leads to significant dependence of viral polymerase function on human ANP32A protein, and Anp32a knockout abolishes PB2 E627K acquisition in mice. These findings reveal that viral PA and host ANP32A are crucial for the emergence of PB2 E627K during adaptation of H7N9 AIVs to humans.

9.
Emerg Microbes Infect ; 8(1): 438-447, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30898043

RESUMO

African swine fever (ASF) entered China in August 2018 and rapidly spread across the entire country, severely threatening the Chinese domestic pig population, which accounts for more than 50% of the pig population worldwide. In this study, an ASFV isolate, Pig/Heilongjiang/2018 (Pig/HLJ/18), was isolated in primary porcine alveolar macrophages (PAMs) from a pig sample from an ASF outbreak farm. The isolate was characterized by using the haemadsorption (HAD) test, Western blotting and immunofluorescence, and electronic microscopy. Phylogenetic analysis of the viral p72 gene revealed that Pig/HLJ/18 belongs to Genotype II. Infectious titres of virus propagated in primary PAMs and pig marrow macrophages were as high as 107.2 HAD50/ml. Specific-pathogen-free pigs intramuscularly inoculated with different virus dosages at 103.5-106.5 HAD50 showed acute disease with fever and haemorrhagic signs. The incubation periods were 3-5 days for virus-inoculated pigs and 9 days for contact pigs. All virus-inoculated pigs died between 6-9 days post-inoculation (p.i.), and the contact pigs died between 13-14 days post-contact (p.c.). Viremia started on day 2 p.i. in inoculated pigs and on day 9 p.c. in contact pigs. Viral genomic DNA started to be detected from oral and rectal swab samples on 2-5 days p.i. in virus-inoculated pigs, and 6-10 days p.c. in contact pigs. These results indicate that Pig/HLJ/18 is highly virulent and transmissible in domestic pigs. Our study demonstrates the threat of ASFV and emphasizes the need to control and eradicate ASF in China.


Assuntos
Vírus da Febre Suína Africana/crescimento & desenvolvimento , Vírus da Febre Suína Africana/isolamento & purificação , Febre Suína Africana/patologia , Febre Suína Africana/virologia , Replicação Viral , Vírus da Febre Suína Africana/classificação , Vírus da Febre Suína Africana/genética , Animais , Sangue/virologia , China , Genótipo , Macrófagos Alveolares/virologia , Boca/virologia , Filogenia , Reto/virologia , Análise de Sobrevida , Sus scrofa , Suínos , Fatores de Tempo
11.
Cell Rep ; 26(5): 1258-1272.e4, 2019 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-30699353

RESUMO

DExD/H-box helicase members are key receptors for recognizing viral nucleic acids, and they regulate retinoic acid-inducible gene I (RIG-I)-like receptor (RLR)-mediated type I interferon (IFN) production. Here, we report that the DExD/H-box helicase family member DExD/H-box RNA helicase 19 (DDX19) is a negative regulator of type I IFN production. Ectopic expression of DDX19 suppressed poly(I:C) (polyinosinic-polycytidylic acid)- and Sendai-virus-induced type I IFN production, whereas knockdown of DDX19 expression enhanced type I IFN production. Mechanistically, DDX19 inhibited TANK-binds kinase 1 (TBK1)- and inhibitor-κb kinase ε (IKKε)-mediated phosphorylation of interferon regulatory factor 3 (IRF3) by disrupting the interaction between TBK1 or IKKε and IRF3. Additionally, DDX19 recruited Lamtor2 and then formed the TBK1-IKKε-Lamtor2-DDX19-IRF3 complex to suppress IFN production by promoting TBK1 and IKKε degradation. We generated Ddx19 knockout mice using transcription activator-like effector nucleases (TALENs) and found that Ddx19 deficiency in vivo augmented type I IFN production, resulting in suppression of encephalomyocarditis virus replication. These data show that DDX19 is an important negative regulator of RLR-mediated type I IFN production.

12.
Viruses ; 12(1)2019 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-31905947

RESUMO

Rabies virus (RABV) invades the central nervous system and nearly always causes fatal disease in humans. RABV enters cells via clathrin-mediated endocytosis upon receptor binding. The detailed mechanism of this process and how it is regulated are not fully understood. Here, we carried out a high-through-put RNAi analysis and identified AP2-associated kinase 1 (AAK1), a serine/threonine kinase, as an important cellular component in regulating the entry of RABV. AAK1 knock-down greatly inhibits RABV infection of cells, and AAK1-induced phosphorylation of threonine 156 of the µ subunit of adaptor protein 2 (AP2M1) is found to be required for RABV entry. Inhibition of AAK1 kinase activity by sunitinib blocked AP2M1 phosphorylation, significantly inhibiting RABV infection and preventing RABV from entering early endosomes. In vivo studies revealed that sunitinib prolongs the survival of mice challenged with RABV street virus. Our findings indicate that AAK1 is a potential drug target for postexposure prophylaxis against rabies.

13.
Vet Microbiol ; 223: 1-8, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30173733

RESUMO

Brucellosis, caused by Brucella spp., is one of the most serious zoonotic bacterial diseases. Small RNAs (sRNAs) are recognized as a key player in bacterial post-transcription regulation, since they participate in many biological processes with high efficiency and may govern the intracellular biochemistry and virulence of some pathogenic bacteria. Here, a novel small regulatory RNA, Bmsr1 (Brucella melitensis M28 small RNA 1), was identified in a virulent Brucella melitensis M28 strain based on bioinformatic analysis, reverse transcription PCR (RT-PCR), and Northern blot. The Bmsr1 expression level was highly induced after infection of macrophage cells RAW264.7 at 48 h, suggesting a role for Bmsr1 during in vitro infection. Indeed, bmsr1 deletion mutant of M28 attenuated its intracellular survival in RAW264.7 at 24 h and 48 h post-infection. In a mouse model of chronic infection, bmsr1 deletion strain displayed decreased colonization in the spleen while Bmsr1-overexpressed strain showed higher colonization levels than wild type pathogen. Isobaric tags for relative and absolute quantification (iTRAQ) revealed that 314 proteins were differentially expressed in M28Δbmsr1 compared with wild type. Functional annotation analysis demonstrated that most of those proteins are involved in biological processes and those proteins in the ribosome and nitrogen metabolism pathways were enriched. iTRAQ results combined with target prediction identified several potential target genes related to virulence, including virB2, virB9, virB10, virB11, and vjbR and many metabolism genes. Taken together, this study revealed the contribution of a novel sRNA Bmsr1 to virulence of B. melitensis M28, probably by influencing genes involved in T4SS, virulence regulator VjbR and other metabolism genes.


Assuntos
Brucella melitensis/genética , Brucelose/veterinária , Pequeno RNA não Traduzido/metabolismo , Animais , Brucella melitensis/patogenicidade , Brucelose/microbiologia , Modelos Animais de Doenças , Feminino , Humanos , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Células RAW 264.7 , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , Pequeno RNA não Traduzido/genética , Deleção de Sequência , Organismos Livres de Patógenos Específicos , Baço/microbiologia , Virulência , Zoonoses
14.
PLoS Pathog ; 14(7): e1007189, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30028877

RESUMO

Rabies virus (RABV) invades the central nervous system and nearly always causes fatal disease in humans. How RABV interacts with host neuron membrane receptors to become internalized and cause rabid symptoms is not yet fully understood. Here, we identified a novel receptor of RABV, which RABV uses to infect neurons. We found that metabotropic glutamate receptor subtype 2 (mGluR2), a member of the G protein-coupled receptor family that is abundant in the central nervous system, directly interacts with RABV glycoprotein to mediate virus entry. RABV infection was drastically decreased after mGluR2 siRNA knock-down in cells. Antibodies to mGluR2 blocked RABV infection in cells in vitro. Moreover, mGluR2 ectodomain soluble protein neutralized the infectivity of RABV cell-adapted strains and a street strain in cells (in vitro) and in mice (in vivo). We further found that RABV and mGluR2 are internalized into cells and transported to early and late endosomes together. These results suggest that mGluR2 is a functional cellular entry receptor for RABV. Our findings may open a door to explore and understand the neuropathogenesis of rabies.


Assuntos
Vírus da Raiva/patogenicidade , Raiva/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Internalização do Vírus , Animais , Linhagem Celular , Humanos , Camundongos , Raiva/fisiopatologia
15.
J Virol ; 92(18)2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-29950422

RESUMO

Goatpox virus (GTPV) is an important member of the Capripoxvirus genus of the Poxviridae Capripoxviruses have large and complex DNA genomes encoding many unknown proteins that may contribute to virulence. We identified that the 135 open reading frame of GTPV is an early gene that encodes an ∼18-kDa protein that is nonessential for viral replication in cells. This protein functioned as an inhibitor of NF-κB activation and apoptosis and is similar to the N1L protein of vaccinia virus. In the natural host, sheep, deletion of the 135 gene from the GTPV live vaccine strain AV41 resulted in less attenuation than that induced by deletion of the tk gene, a well-defined nonessential gene in the poxvirus genome. Using the 135 gene as the insertion site, a recombinant AV41 strain expressing hemagglutinin of peste des petits ruminants virus (PPRV) was generated and elicited stronger neutralization antibody responses than those obtained using the traditional tk gene as the insertion site. These results suggest that the 135 gene of GTPV encodes an immunomodulatory protein to suppress host innate immunity and may serve as an optimized insertion site to generate capripoxvirus-vectored live dual vaccines.IMPORTANCE Capripoxviruses are etiological agents of important diseases in sheep, goats, and cattle. There are rare reports about viral protein function related to capripoxviruses. In the present study, we found that the 135 protein of GTPV plays an important role in inhibition of innate immunity and apoptosis in host cells. Use of the 135 gene as the insertion site to generate a vectored vaccine resulted in stronger adaptive immune responses than those obtained using the tk locus as the insertion site. As capripoxviruses are promising virus-vectored vaccines against many important diseases in small ruminants and cattle, the 135 gene may serve as an improved insertion site to generate recombinant capripoxvirus-vectored live dual vaccines.


Assuntos
Apoptose/genética , Capripoxvirus/genética , NF-kappa B/antagonistas & inibidores , Proteínas Virais/genética , Vacinas Virais/genética , Animais , Capripoxvirus/imunologia , Capripoxvirus/patogenicidade , Vetores Genéticos , Células HEK293 , Hemaglutininas/genética , Hemaglutininas/imunologia , Humanos , Imunidade Inata , Fatores Imunológicos/imunologia , Mutagênese Insercional , NF-kappa B/genética , Fases de Leitura Aberta/genética , Vírus da Peste dos Pequenos Ruminantes/química , Vírus da Peste dos Pequenos Ruminantes/genética , Vírus da Peste dos Pequenos Ruminantes/imunologia , Ovinos , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia , Proteínas Virais/química , Proteínas Virais/isolamento & purificação , Vacinas Virais/imunologia
16.
Cell Chem Biol ; 25(6): 761-774.e5, 2018 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-29681526

RESUMO

Many cancer-related proteins are controlled by composite post-translational modifications (PTMs), but prevalent strategies only target one type of modification. Here we describe a designed peptide that controls two types of modifications of the p53 tumor suppressor, based on the discovery of a protein complex that suppresses p53 (suppresome). We found that Morn3, a cancer-testis antigen, recruits different PTM enzymes, such as sirtuin deacetylase and ubiquitin ligase, to confer composite modifications on p53. The molecular functions of Morn3 were validated through in vivo assays and chemico-biological intervention. A rationally designed Morn3-targeting peptide (Morncide) successfully activated p53 and suppressed tumor growth. These findings shed light on the regulation of protein PTMs and present a strategy for targeting two modifications with one molecule.


Assuntos
Antineoplásicos/farmacologia , Desenho de Drogas , Leupeptinas/farmacologia , Peptídeos/farmacologia , Proteína Supressora de Tumor p53/agonistas , Proteína Supressora de Tumor p53/química , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Células HCT116 , Humanos , Leupeptinas/química , Camundongos , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Peptídeos/síntese química , Peptídeos/química , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Proteína Supressora de Tumor p53/metabolismo
17.
J Virol ; 92(12)2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29593046

RESUMO

Signal peptidase complex subunit 1 (SPCS1) is a newly identified host factor that regulates flavivirus replication, but the molecular mechanism is not fully understood. Here, using Japanese encephalitis virus (JEV) as a model, we investigated the mechanism through which the host factor SPCS1 regulates the replication of flaviviruses. We first validated the regulatory function of SPCS1 in JEV propagation by knocking down and knocking out endogenous SPCS1. The loss of SPCS1 function markedly reduced intracellular virion assembly and the production of infectious JEV particles but did not affect cell entry, RNA replication, or translation of the virus. SPCS1 was found to interact with nonstructural protein 2B (NS2B), which is involved in posttranslational protein processing and virus assembly. Serial deletion mutation of the JEV NS2B protein revealed that two transmembrane domains, NS2B(1-49) and NS2B(84-131), interact with SPCS1. Further mutagenesis analysis of conserved flavivirus residues in two SPCS1 interaction domains of NS2B demonstrated that G12A, G37A, and G47A in NS2B(1-49) and P112A in NS2B(84-131) weakened the interaction with SPCS1. Deletion mutation of SPCS1 revealed that SPCS1(91-169), which contains two transmembrane domains, was involved in interactions with both NS2B(1-49) and NS2B(84-131). Taken together, these results demonstrate that SPCS1 affects viral replication by interacting with NS2B, thereby influencing the posttranslational processing of JEV proteins and the assembly of virions.IMPORTANCE Understanding virus-host interactions is important for elucidating the molecular mechanisms of virus propagation and identifying potential antiviral targets. Previous reports demonstrated that SPCS1 is involved in the flavivirus life cycle, but the mechanism remains unknown. In this study, we confirmed that SPCS1 participates in the posttranslational protein processing and viral assembly stages of the JEV life cycle but not in the cell entry, genome RNA replication, or translation stages. Furthermore, we found that SPCS1 interacts with two independent transmembrane domains of the flavivirus NS2B protein. NS2B also interacts with NS2A, which is proposed to mediate virus assembly. Therefore, we propose a protein-protein interaction model showing how SPCS1 participates in the assembly of JEV particles. These findings expand our understanding of how host factors participate in the flavivirus replication life cycle and identify potential antiviral targets for combating flavivirus infection.


Assuntos
Vírus da Encefalite Japonesa (Espécie)/crescimento & desenvolvimento , Proteínas de Membrana/metabolismo , Processamento de Proteína Pós-Traducional/genética , Proteínas não Estruturais Virais/metabolismo , Montagem de Vírus/genética , Sequência de Aminoácidos , Animais , Linhagem Celular , Cricetinae , Vírus da Encefalite Japonesa (Espécie)/genética , Células HEK293 , Interações Hospedeiro-Patógeno/fisiologia , Humanos , Proteínas de Membrana/genética , Domínios Proteicos/genética , Proteínas não Estruturais Virais/genética
18.
J Virol ; 92(11)2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29563291

RESUMO

Nonstructural protein 1 (NS1) of influenza A virus regulates innate immune responses via various mechanisms. We previously showed that a naturally occurring deletion (the EALQR motif) in the NS1 effector domain of an H5N1 swine-origin avian influenza virus impairs the inhibition of type I interferon (IFN) in chicken fibroblasts and attenuates virulence in chickens. Here we found that the virus bearing this deletion in its NS1 effector domain showed diminished inhibition of IFN-related cytokine expression and attenuated virulence in mice. We further showed that deletion of the EALQR motif disrupted NS1 dimerization, impairing double-stranded RNA (dsRNA) sequestration and competitive binding with RIG-I. In addition, the EALQR-deleted NS1 protein could not bind to TRIM25, unlike full-length NS1, and was less able to block TRIM25 oligomerization and self-ubiquitination, further impairing the inhibition of TRIM25-mediated RIG-I ubiquitination compared to that with full-length NS1. Our data demonstrate that the EALQR deletion prevents NS1 from blocking RIG-I-mediated IFN induction via a novel mechanism to attenuate viral replication and virulence in mammalian cells and animals.IMPORTANCE H5 highly pathogenic avian influenza viruses have infected more than 800 individuals across 16 countries, with an overall case fatality rate of 53%. Among viral proteins, nonstructural protein 1 (NS1) of influenza virus is considered a key determinant for type I interferon (IFN) antagonism, pathogenicity, and host range. However, precisely how NS1 modulates virus-host interaction, facilitating virus survival, is not fully understood. Here we report that a naturally occurring deletion (of the EALQR motif) in the NS1 effector domain of an H5N1 swine-origin avian influenza virus disrupted NS1 dimerization, which diminished the blockade of IFN induction via the RIG-I signaling pathway, thereby impairing virus replication and virulence in the host. Our study demonstrates that the EALQR motif of NS1 regulates virus fitness to attain a virus-host compromise state in animals and identifies this critical motif as a potential target for the future development of small molecular drugs and attenuated vaccines.


Assuntos
Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/imunologia , Interferon Tipo I/imunologia , Proteínas não Estruturais Virais/genética , Células A549 , Animais , Linhagem Celular Tumoral , Embrião de Galinha , Proteínas de Ligação a DNA/metabolismo , Feminino , Células HEK293 , Humanos , Imunidade Inata/imunologia , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Proteínas do Tecido Nervoso/metabolismo , Ligação Proteica/genética , Domínios Proteicos/genética , Deleção de Sequência/genética , Células THP-1 , Fatores de Transcrição/metabolismo , Ubiquitinação , Células Vero , Proteínas não Estruturais Virais/metabolismo
19.
Genome Announc ; 6(8)2018 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-29472333

RESUMO

Enterotoxigenic Escherichia coli (ETEC) is one of the main causes of illness and death in neonatal and recently weaned pigs. Here, we sequenced the genomes of two ETEC strains that were previously used as inactivated vaccines in China.

20.
PLoS Pathog ; 14(1): e1006851, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29352288

RESUMO

Transcription and replication of the influenza A virus (IAV) genome occur in the nucleus of infected cells and are carried out by the viral ribonucleoprotein complex (vRNP). As a major component of the vRNP complex, the viral nucleoprotein (NP) mediates the nuclear import of the vRNP complex via its nuclear localization signals (NLSs). Clearly, an effective way for the host to antagonize IAV infection would be by targeting vRNP nuclear import. Here, we identified phospholipid scramblase 1 (PLSCR1) as a binding partner of NP by using a yeast two-hybrid (Y2H) screen. The interaction between NP and PLSCR1 in mammalian cells was demonstrated by using co-immunoprecipitation and pull-down assays. We found that the stable overexpression of PLSCR1 suppressed the nuclear import of NP, hindered the virus life cycle, and significantly inhibited the replication of various influenza subtypes. In contrast, siRNA knockdown or CRISPR/Cas9 knockout of PLSCR1 increased virus propagation. Further analysis indicated that the inhibitory effect of PLSCR1 on the nuclear import of NP was not caused by affecting the phosphorylation status of NP or by stimulating the interferon (IFN) pathways. Instead, PLSCR1 was found to form a trimeric complex with NP and members of the importin α family, which inhibited the incorporation of importin ß, a key mediator of the classical nuclear import pathway, into the complex, thus impairing the nuclear import of NP and suppressing virus replication. Our results demonstrate that PLSCR1 negatively regulates virus replication by interacting with NP in the cytoplasm and preventing its nuclear import.


Assuntos
Núcleo Celular/metabolismo , Proteínas de Transferência de Fosfolipídeos/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas do Core Viral/metabolismo , Replicação Viral , Células A549 , Transporte Ativo do Núcleo Celular , Animais , Células Cultivadas , Cães , Regulação para Baixo , Células HEK293 , Humanos , Células Madin Darby de Rim Canino , Ligação Proteica , Transporte Proteico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA