Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Bone Miner Res ; 2021 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-33534144

RESUMO

After trauma, the formed fracture hematoma within the fracture gap contains all the important components (immune/stem cells, mediators) to initiate bone regeneration immediately. Thus, it is of great importance but also the most susceptible to negative influences. To study the interaction between bone and immune cells within the fracture gap, up-to-date in vitro systems should be capable of recapitulating cellular and humoral interactions and the physicochemical microenvironment (eg, hypoxia). Here, we first developed and characterized scaffold-free bone-like constructs (SFBCs), which were produced from bone marrow-derived mesenchymal stromal cells (MSCs) using a macroscale mesenchymal condensation approach. SFBCs revealed permeating mineralization characterized by increased bone volume (µCT, histology) and expression of osteogenic markers (RUNX2, SPP1, RANKL). Fracture hematoma (FH) models, consisting of human peripheral blood (immune cells) mixed with MSCs, were co-cultivated with SFBCs under hypoxic conditions. As a result, FH models revealed an increased expression of osteogenic (RUNX2, SPP1), angiogenic (MMP2, VEGF), HIF-related (LDHA, PGK1), and inflammatory (IL6, IL8) markers after 12 and 48 hours co-cultivation. Osteogenic and angiogenic gene expression of the FH indicate the osteoinductive potential and, thus, the biological functionality of the SFBCs. IL-6, IL-8, GM-CSF, and MIP-1ß were detectable within the supernatant after 24 and 48 hours of co-cultivation. To confirm the responsiveness of our model to modifying substances (eg, therapeutics), we used deferoxamine (DFO), which is well known to induce a cellular hypoxic adaptation response. Indeed, DFO particularly increased hypoxia-adaptive, osteogenic, and angiogenic processes within the FH models but had little effect on the SFBCs, indicating different response dynamics within the co-cultivation system. Therefore, based on our data, we have successfully modeled processes within the initial fracture healing phase in vitro and concluded that the cross-talk between bone and immune cells in the initial fracture healing phase is of particular importance for preclinical studies. © 2021 American Society for Bone and Mineral Research (ASBMR).

2.
Pharmaceutics ; 12(9)2020 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-32872353

RESUMO

Bone morphogenetic protein-2 (BMP-2) is a known key mediator of physiological bone regeneration and is clinically approved for selected musculoskeletal interventions. Yet, broad usage of this growth factor is impeded due to side effects that are majorly evoked by high dosages and burst release kinetics. In this study, mesoporous bioactive glass microspheres (MBGs), produced by an aerosol-assisted spray-drying scalable process, were loaded with BMP-2 resulting in prolonged, low-dose BMP-2 release without affecting the material characteristics. In vitro, MBGs were found to be cytocompatible and to induce a pro-osteogenic response in primary human mesenchymal stromal cells (MSCs). In a pre-clinical rodent model, BMP-2 loaded MBGs significantly enhanced bone formation and influenced the microarchitecture of newly formed bone. The MBG carriers alone performed equal to the untreated (empty) control in most parameters tested, while additionally exerting mild pro-angiogenic effects. Using MBGs as a biocompatible, pro-regenerative carrier for local and sustained low dose BMP-2 release could limit side effects, thus enabling a safer usage of BMP-2 as a potent pro-osteogenic growth factor.

3.
Int J Mol Sci ; 22(1)2020 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-33383915

RESUMO

The interaction of hematopoietic cells and the bone microenvironment to maintain bone homeostasis is increasingly appreciated. We hypothesized that the transfer of allogeneic T lymphocytes has extensive effects on bone biology and investigated trabecular and cortical bone structures, the osteoblast reconstitution, and the bone vasculature in experimental hematopoietic stem cell transplantations (HSCT). Allogeneic or syngeneic hematopoietic stem cells (HSC) and allogeneic T lymphocytes were isolated and transferred in a murine model. After 20, 40, and 60 days, bone structures were visualized using microCT and histology. Immune cells were monitored using flow cytometry and bone vessels, bone cells and immune cells were fluorescently stained and visualized. Remodeling of the bone substance, the bone vasculature and bone cell subsets were found to occur as early as day +20 after allogeneic HSCT (including allogeneic T lymphocytes) but not after syngeneic HSCT. We discovered that allogeneic HSCT (including allogeneic T lymphocytes) results in a transient increase of trabecular bone number and bone vessel density. This was paralleled by a cortical thinning as well as disruptive osteoblast lining and loss of B lymphocytes. In summary, our data demonstrate that the adoptive transfer of allogeneic HSCs and allogeneic T lymphocytes can induce profound structural and spatial changes of bone tissue homeostasis as well as bone marrow cell composition, underlining the importance of the adaptive immune system for maintaining a balanced bone biology.


Assuntos
Células da Medula Óssea/metabolismo , Remodelação Óssea , Animais , Biomarcadores , Medula Óssea/metabolismo , Medula Óssea/patologia , Diáfises , Doença Enxerto-Hospedeiro/etiologia , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Transplante de Células-Tronco Hematopoéticas/métodos , Imunofenotipagem , Camundongos , Osteoblastos/imunologia , Osteoblastos/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Quimeras de Transplante , Transplante Homólogo
4.
Front Immunol ; 10: 1954, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31475013

RESUMO

There is increasing evidence that T lymphocytes play a key role in controlling endogenous regeneration. Regeneration appears to be impaired in case of local accumulation of CD8+ effector T cells (TEFF), impairing endogenous regeneration by increasing a primary "useful" inflammation toward a damaging level. Thus, rescuing regeneration by regulating the heightened pro-inflammatory reaction employing regulatory CD4+ T (TReg) cells could represent an immunomodulatory option to enhance healing. Hypothesis was that CD4+ TReg might counteract undesired effects of CD8+ TEFF. Using adoptive TReg transfer, bone healing was consistently improved in mice possessing an inexperienced immune system with low amounts of CD8+ TEFF. In contrast, mice with an experienced immune system (high amounts of CD8+ TEFF) showed heterogeneous bone repair with regeneration being dependent upon the individual TEFF/TReg ratio. Thus, the healing outcome can only be improved by an adoptive TReg therapy, if an unfavorable TEFF/TReg ratio can be reshaped; if the individual CD8+ TEFF percentage, which is dependent on the individual immune experience can be changed toward a favorable ratio by the TReg transfer. Remarkably, also in patients with impaired fracture healing the TEFF/TReg ratio was higher compared to uneventful healers, validating our finding in the mouse osteotomy model. Our data demonstrate for the first time the key-role of a balanced TEFF/TReg response following injury needed to reach successful regeneration using bone as a model system. Considering this strategy, novel opportunities for immunotherapy in patients, which are at risk for impaired healing by targeting TEFF cells and supporting TReg cells to enhance healing are possible.


Assuntos
Desenvolvimento Ósseo/imunologia , Regeneração Óssea/imunologia , Linfócitos T CD8-Positivos/imunologia , Imunomodulação/imunologia , Linfócitos T Reguladores/imunologia , Transferência Adotiva/métodos , Animais , Biomarcadores/sangue , Osso e Ossos/imunologia , Feminino , Fraturas Ósseas/terapia , Humanos , Imunoterapia/métodos , Contagem de Linfócitos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Linfócitos T Reguladores/transplante
5.
Front Immunol ; 10: 797, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31031773

RESUMO

Bone formation as well as bone healing capacity is known to be impaired in the elderly. Although bone formation is outpaced by bone resorption in aged individuals, we hereby present a novel path that considerably impacts bone formation and architecture: Bone formation is substantially reduced in aged individual owing to the experience of the adaptive immunity. Thus, immune-aging in addition to chronological aging is a potential risk factor, with an experienced immune system being recognized as more pro-inflammatory. The role of the aging immune system on bone homeostasis and on the bone healing cascade has so far not been considered. Within this study mice at different age and immunological experience were analyzed toward bone properties. Healing was assessed by introducing an osteotomy, immune cells were adoptively transferred to disclose the difference in biological vs. chronological aging. In vitro studies were employed to test the interaction of immune cell products (cytokines) on cells of the musculoskeletal system. In metaphyseal bone, immune-aging affects bone homeostasis by impacting bone formation capacity and thereby influencing mass and microstructure of bone trabeculae leading to an overall reduced mechanical competence as found in bone torsional testing. Furthermore, bone formation is also impacted during bone regeneration in terms of a diminished healing capacity observed in young animals who have an experienced human immune system. We show the impact of an experienced immune system compared to a naïve immune system, demonstrating the substantial differences in the healing capacity and bone homeostasis due to the immune composition. We further showed that in vivo mechanical stimulation changed the immune system phenotype in young mice toward a more naïve composition. While this rescue was found to be significant in young individuals, aged mice only showed a trend toward the reconstitution of a more naïve immune phenotype. Considering the immune system's experience level in an individual, will likely allow one to differentiate (stratify) and treat (immune-modulate) patients more effectively. This work illustrates the relevance of including immune diagnostics when discussing immunomodulatory therapeutic strategies for the progressively aging population of the industrial countries.


Assuntos
Imunidade Adaptativa , Regeneração Óssea , Remodelação Óssea/imunologia , Osso e Ossos/imunologia , Osso e Ossos/metabolismo , Homeostase , Osteogênese , Animais , Biomarcadores , Osso e Ossos/diagnóstico por imagem , Osso e Ossos/patologia , Diferenciação Celular , Citocinas/metabolismo , Feminino , Humanos , Fenômenos Mecânicos , Camundongos , Transdução de Sinais , Cicatrização , Microtomografia por Raio-X/métodos
6.
Front Immunol ; 10: 713, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31024548

RESUMO

Within an aging population, fracture incidences will rise and with the augmented risks of impaired healing the overall risk of delayed bone regeneration will substantially increase in elderly patients. Thus, new strategies to rescue fracture healing in the elderly are highly warranted. Modulating the initial inflammatory phase toward a reduced pro-inflammation launches new treatment options for delayed or impaired healing specifically in the elderly. Here, we evaluated the capacity of the prostacyclin analog Iloprost to modulate the inflammatory phase toward a pro-regenerative milieu using in vitro as well as in vivo model systems. In vitro, Iloprost administration led to a downregulation of potential unfavorable CD8+ cytotoxic T cells as well as their pro-inflammatory cytokine secretion profile. Furthermore, Iloprost increased the mineralization capacity of osteogenic induced mesenchymal stromal cells through both direct as well as indirect cues. In an in vivo approach, Iloprost, embedded in a biphasic fibrin scaffold, decreased the pro-inflammatory and simultaneously enhanced the anti-inflammatory phase thereby improving bone healing outcome. Overall, our presented data confirms a possible strategy to modulate the early inflammatory phase in aged individuals toward a physiological healing by a downregulation of an excessive pro-inflammation that otherwise would impair healing. Further confirmation in phase I/II trials, however, is needed to validate the concept in a broader clinical evaluation.


Assuntos
Fraturas Ósseas/tratamento farmacológico , Iloprosta/uso terapêutico , Células-Tronco Mesenquimais/imunologia , Linfócitos T Citotóxicos/imunologia , Idoso , Animais , Regeneração Óssea , Células Cultivadas , Citocinas/metabolismo , Epoprostenol/análogos & derivados , Feminino , Humanos , Imunomodulação , Mediadores da Inflamação/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Osteogênese/efeitos dos fármacos , Linfócitos T Citotóxicos/efeitos dos fármacos , Cicatrização
7.
Curr Osteoporos Rep ; 16(2): 155-168, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29536393

RESUMO

PURPOSE OF REVIEW: Impaired healing outcomes or even non-unions after bone injury are still a highly relevant problem in the daily clinical life. Especially within an aging population, the occurrence of bone fractures increases and thus novel treatment approaches to overcome compromised bone regeneration are needed. RECENT FINDINGS: The gold standard to treat delayed or non-healing bone injuries is still the use of autologous bone grafts to foster regeneration. Besides its successful treatment outcome, it also has disadvantages: a second surgery is needed in order to harvest the bone material and the material is highly limited. Looking into the recent literature, a multitude of different research approaches were already conducted to identify new possible strategies to treat impaired bone regeneration: application of mesenchymal stromal cells, platelet lysates, growth factors, interference in the immune system, or bone formation stimulation by ultrasound. This review gives an overview of the treatment approaches actually performed in the clinic as well as at the bench in the context of compromised bone healing. It clearly highlights the complexity of the nature of non-healing bone fractures as well as patient-dependent factors influencing the healing process.


Assuntos
Proteínas Morfogenéticas Ósseas/uso terapêutico , Transplante Ósseo/métodos , Fraturas não Consolidadas/terapia , Transplante de Células-Tronco Mesenquimais/métodos , Plasma Rico em Plaquetas , Terapia por Ultrassom/métodos , Fator A de Crescimento do Endotélio Vascular/uso terapêutico , Humanos , Imunoterapia/métodos , Peptídeos e Proteínas de Sinalização Intercelular/uso terapêutico , Transplante Autólogo
8.
Front Immunol ; 8: 562, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28596766

RESUMO

Bone is a unique organ able to regenerate itself after injuries. This regeneration requires the local interplay between different biological systems such as inflammation and matrix formation. Structural reconstitution is initiated by an inflammatory response orchestrated by the host immune system. However, the individual role of T cells and B cells in regeneration and their relationship to bone tissue reconstitution remain unknown. Comparing bone and fracture healing in animals with and without mature T and B cells revealed the essential role of these immune cells in determining the tissue mineralization and thus the bone quality. Bone without mature T and B cells is stiffer when compared to wild-type bone thus lacking the elasticity that helps to absorb forces, thus preventing fractures. In-depth analysis showed dysregulations in collagen deposition and osteoblast distribution upon lack of mature T and B cells. These changes in matrix deposition have been correlated with T cells rather than B cells within this study. This work presents, for the first time, a direct link between immune cells and matrix formation during bone healing after fracture. It illustrates specifically the role of T cells in the collagen organization process and the lack thereof in the absence of T cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...