Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Mais filtros

Base de dados
Intervalo de ano de publicação
Proc Natl Acad Sci U S A ; 119(40): e2209213119, 2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36161956


We have combined ultrasensitive force-based spin detection with high-fidelity spin control to achieve NMR diffraction (NMRd) measurement of ~2 million [Formula: see text]P spins in a [Formula: see text] volume of an indium-phosphide (InP) nanowire. NMRd is a technique originally proposed for studying the structure of periodic arrangements of spins, with complete access to the spectroscopic capabilities of NMR. We describe two experiments that realize NMRd detection with subangstrom precision. In the first experiment, we encode a nanometer-scale spatial modulation of the z-axis magnetization of [Formula: see text]P spins and detect the period and position of the modulation with a precision of <0.8 Å. In the second experiment, we demonstrate an interferometric technique, utilizing NMRd, to detect an angstrom-scale displacement of the InP sample with a precision of 0.07 Å. The diffraction-based techniques developed in this work extend the Fourier-encoding capabilities of NMR to the angstrom scale and demonstrate the potential of NMRd as a tool for probing the structure and dynamics of nanocrystalline materials.

Adv Sci (Weinh) ; 8(23): e2101402, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34719881


The manipulation of mesoscale domain wall phenomena has emerged as a powerful strategy for designing ferroelectric responses in functional devices, but its full potential is not yet realized in the field of magnetism. This work shows a direct connection between magnetic response functions in mechanically strained samples of Mn3 O4 and MnV2 O4 and stripe-like patternings of the bulk magnetization which appear below known magnetostructural transitions. Building off previous magnetic force microscopy data, a small-angle neutron scattering is used to show that these patterns represent distinctive magnetic phenomena which extend throughout the bulk of two separate materials, and further are controllable via applied magnetic field and mechanical stress. These results are unambiguously connected to the anomalously large magnetoelastic and magnetodielectric response functions reported for these materials, by performing susceptibility measurements on the same crystals and directly correlating local and macroscopic data.

Nano Lett ; 20(1): 218-223, 2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31765571


In recent years, self-assembled semiconductor nanowires have been successfully used as ultrasensitive cantilevers in a number of unique scanning probe microscopy (SPM) settings. We describe the fabrication of ultralow dissipation patterned silicon nanowire (SiNW) arrays optimized for scanning probe applications. Our fabrication process produces ultrahigh aspect ratio vertical SiNWs that exhibit exceptional force sensitivity. The highest sensitivity SiNWs have thermomechanical noise-limited force sensitivity of [Formula: see text] at room temperature and [Formula: see text] at 4 K. To facilitate their use in SPM, the SiNWs are patterned within 7 µm from the edge of the substrate, allowing convenient optical access for displacement detection.

Nano Lett ; 19(8): 5476-5482, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31246034


We demonstrate a method for manipulating small ensembles of vortices in multiply connected superconducting structures. A micron-size magnetic particle attached to the tip of a silicon cantilever is used to locally apply magnetic flux through the superconducting structure. By scanning the tip over the surface of the device and by utilizing the dynamical coupling between the vortices and the cantilever, a high-resolution spatial map of the different vortex configurations is obtained. Moving the tip to a particular location in the map stabilizes a distinct multivortex configuration. Thus, the scanning of the tip over a particular trajectory in space permits nontrivial operations to be performed, such as braiding of individual vortices within a larger vortex ensemble-a key capability required by many proposals for topological quantum computing.